Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single base resolution
Ontology highlight
ABSTRACT: To investigate the genomic levels of 5-hydroxymethylcytosine at single-base resolution. The current study developed a method which allows one to study hydroxymethylation of cytosines in the genome via a subtractive method of RRBS and oxidative RRBS.
Project description:Methylation of cytosine in DNA (5mC) is an important epigenetic mark that is involved in the regulation of genome function. During early embryonic development in mammals, the DNA methylation landscape is dynamically reprogrammed in part through active demethylation. Recent advances have identified key players involved in active demethylation pathways, including oxidation of 5mC to 5-hydroxymethylcytosine (5hmC) and 5-formylcytosine (5fC) by the TET family of enzymes and excision of 5fC by the base excision repair enzyme thymine DNA glycosylase (TDG). Here, we provide the first genome-wide distribution map of 5fC in mouse embryonic stem (ES) cells and evaluate potential roles for 5fC in differentiation. Our method exploits the unique reactivity of 5fC to link a biotin tag for pulldown and high-throughput sequencing. Genome-wide mapping revealed 5fC enrichment in CpG islands (CGIs) of promoters and exons. CGI promoters in which 5fC was relatively more enriched than 5mC or 5hmC corresponded to transcriptionally active genes. Accordingly, 5fC-rich promoters had elevated H3K4me3 levels, a histone mark associated with active transcription, and were frequently bound by RNA Polymerase II. Downregulation of TDG led to accumulation of 5fC in CGIs in ES cells, which correlates with increased methylation in these genomic regions during differentiation and in mouse embryonic fibroblasts derived from TDG knockout embryos. Collectively, our data suggest that 5fC plays a role in epigenetic reprogramming. The formation and removal of this cytosine modification are confined to specific genomic regions, which are in part controlled by TDG. Notably, 5fC excision in ES cells is necessary for the correct establishment of CGI methylation patterns during differentiation, and hence, for appropriate patterns of gene expression during development. We devised a method to map 5-formylcytosine (5fC) by linking a biotin tag to 5fC for pulldown and high-throughput sequencing. We mapped 5fC in the following samples of mouse embryonic stem cells (J1): Wild-type ES cells (two replicates); ES cells transfected with siRNA targeting TDG (two replicates); ES cells transfected with non-targeting siRNA (two replicates). One genomic input library was also sequenced to detect and correct biases in fragment enrichment.
Project description:The associated files are mass spec data from size exclusion chromatographic separations of mouse embryonic stem cells with and without RNAse A treatment.
Project description:Here, we characterize the transcriptome of the mouse embryonic stem cell line CM7-1 during differentiation into beating cardiomyocytes and compared the gene expression profiles with those from primary adult murine cardiomyocytes and left ventricular myocardium.
Project description:Background & Aims: Rapid induction of beta-PDGF receptor (beta-PDGFR) is a core feature of hepatic stellate cell activation, the hallmark of liver fibrogenesis. However, biological consequences of the induction are not well characterized. We aimed to determine the involvement of beta-PDGFR-mediated molecular pathway activation on hepatic stellate cells in liver injury, fibrogenesis, and carcinogenesis in vivo. Methods: Loss and constitutive activation of beta-PDGFR were assessed in mouse models with either a stellate cell-specific beta-PDGFR knockout or the expression of an autoactivating mutation respectively. Liver injury and fibrosis were induced in two mechanistically distinct models: carbontetrachloride (CCl4) treatment and ligation of the common bile duct. Hepatocarcinogenesis with underlying liver injury/fibrosis was assessed by a single dose of diethylnitrosamine (DEN) followed by repeated injections of CCl4. Genome-wide expression profiling was performed isolated stellate cells from these models to determine deregulated pathways. Results: Depletion of beta-PDGFR in hepatic stellate cells led to decreased histological liver injury, serum transaminases, collagen alpha 1(I) and alpha smooth muscle actin expression, and collagen deposition. Stellate cell proliferation was significantly reduced after acute hepatic injury in vivo. In contrast, autoactivation of beta-PDGFR in stellate cells accelerated liver fibrosis, most prominently after 6 weeks of CCl4 induced injury. There was no difference in development of DEN-induced pre-neoplastic loci according to the status of beta-PDGFR. Conclusions: Depletion of beta-PDGFR in hepatic stellate cells attenuated the development of liver injury, fibrosis, and stellate cell proliferation in multiple animal models, whereas the constitutive activation of beta-PDGFR enhanced fibrosis. However, manipulation of beta-PDGFR alone did not reduce development of dysplastic nodules. These findings indicate that titration of receptor beta-PDGFR expression on stellate cells parallels fibrosis and injury, but may not impact the development of hepatic neoplasia alone. Hepatic stellate cells were isolated from liver of beta-PDGFR-wild-type or knockout mice, and treated with beta-PDGF ligand or vehicle control.
Project description:PPARα-null and wild-type male mice treated with PFHxS or PFNA PPARα-null and wild-type male mice at 6-9 months of age were dosed by gavage for 7 consecutive days with either 0, 3, or 10 mg/kg PFHxS, or 1 or 3 mg/kg PFNA (#394459, Sigma-Aldrich, St, Louis, MO) in water. PFHxS was kindly provided by 3M Corp (St. Paul, MN). Four biological replicates consisting of individual animals were included in each dose group. Dose levels reflected exposures that produce hepatomegaly in adult mice without inducing overt toxicity.
Project description:Nuclear RNA was isolated from all three cell types to enable differential expression analysis of both coding and non-coding RNA shortly after tamoxifen treatment, that resulted in conditional knock-out of Ring1b in the Ring1a -/- background.
Project description:Alternative polyadenylation (APA) is an important post-transcriptional modification implicated in development. Female germline stem cell (FGSC) is unipotent and capable of giving rise to oocyte. However, whether alternative polyadenylation plays a role in self-renew and cell fate determination of FGSCs remain elusive. Here, we used 3T-Seq developed in our lab to profile genome-wide 3a termini of transcripts and delineate APA sites in mouse FGSCs and explored the biological significance of APA modulation in FGSC identity.
Project description:We investigated the miRNA cluster miR-106b~25 as potential candidate causing male infertility. We analized single and double KO mice. Single KO show derregulation of multiple molecular pathways and disrupted early spermatogenesys, but retain fertility. Double KO show severely disrupted testicular histology and significantly reduced fertility.
Project description:This SuperSeries is composed of the following subset Series: GSE30495: Detailed transcriptomics analysis of the effect of dietary fatty acids on gene regulation in the murine heart. GSE30553: Detailed transcriptomics analysis of the effect of the PPARalpha agonist Wy14,643 on gene regulation in the murine heart Refer to individual Series
Project description:Reduced representation bisulfite sequencing (RRBS) has been proven a powerful method in DNA methylome profiling. Since the initial development of this method, the RRBS protocol has been modified in order to optimize it for genomic coverage, starting material, and library-construction throughput, which has resulted in new methods such as enhanced RRBS (ERRBS), double-enzyme RRBS (dRRBS), gel-free and multiplexed RRBS (mRRBS), and single-cell RRBS (scRRBS). However, each of these methods has failed to address PCR-derived duplication artifacts, which can bias the results of DNA methylation analyses. To overcome the aforementioned complication, we developed quantitative RRBS (Q-RRBS), a method in which unique molecular identifiers (UMIs) are used to eliminate PCR-induced duplication. By performing Q-RRBS on varying amounts of starting material, we determined that duplication-induced artifacts were more severe when small quantities of the starting material were used. However, through using the UMIs, we successfully eliminated these artifacts. Our results demonstrate that Q-RRBS is an optimal strategy for DNA methylation profiling of single cells or samples containing ultra-trace amounts of cells.