Development and Independent Validation of a Molecular Subtype in High Grade Serous Ovarian Cancer using Formalin Fixed Paraffin Embedded Tissue, Validation set
Ontology highlight
ABSTRACT: High Grade Serous Ovarian Cancer (HGSOC) is a histopathological diagnosis and may represent multiple diseases at a molecular level. We investigated whether distinct molecular subgroups may influence treatment choice. The accompanying training set of data has also been deposited in ArrayExpress under accession number E-MTAB-2562 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-2562).
Project description:High Grade Serous Ovarian Cancer (HGSOC) is a histopathological diagnosis and may represent multiple diseases at a molecular level. We investigated whether distinct molecular subgroups may influence treatment choice. The accompanying validation set of data has also been deposited in ArrayExpress under accession number E-MTAB-2570 (http://www.ebi.ac.uk/arrayexpress/experiments/E-MEXP-2570).
Project description:IntroductionGene expression signatures have been identified for epithelial ovarian cancer survival (TCGA) and intrinsic subtypes (Tothill et al.). One obstacle to clinical translation is that these signatures were developed using frozen tissue, whereas usually only formalin-fixed, paraffin embedded (FFPE) tissue is available. The aim of this study was to determine if gene expression signatures can be translated to fixed archival tissues.MethodsRNA extracted from FFPE sections from 240 primary ovarian cancers was analyzed by DASL on Illumina BeadChip arrays. Concordance of expression at the individual gene level was assessed by comparing array data from the same cancers (30 frozen samples analyzed on Affymetrix arrays versus FFPE DASL).ResultsThe correlation between FFPE and frozen survival signature estimates was 0.774. The TCGA signature using DASL was predictive of survival in 106 advanced stage high grade serous ovarian cancers (median survival 33 versus 60 months, estimated hazard ratio for death 2.30, P=0.0007). Similar to Tothill, we found using DASL that most high grade serous ovarian cancers (102/110, 93%) were assigned to subtypes 1, 2, 4 and 5, whereas most endometrioid, clear cell, mucinous and low grade serous cases (39/57, 68%) were assigned to subtypes 3 and 6 (P<10e-15).ConclusionsAlthough individual probe estimates of microarrays may be weakly correlated between FFPE and frozen samples, combinations of probes have robust ability to predict survival and subtype. This suggests that it may be possible to use these signatures for prognostic and predictive purposes as we seek to individualize the treatment of ovarian cancer.
Project description:Initiatives such as The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) have generated high-quality, multi-platform molecular data from thousands of frozen tumor samples. While these initiatives have provided invaluable insight into cancer biology, a tremendous potential resource remains largely untapped in formalin-fixed, paraffin-embedded (FFPE) samples that are more readily available, but which can present technical challenges due to crosslinking of fragile molecules such as RNA. We extracted RNA from FFPE primary melanomas and assessed two gene expression platforms -- genome-wide RNA sequencing (RNA-seq) and targeted NanoString -- for their ability to generate coherent biological signals. To do so, we generated an improved approach to quantifying gene expression pathways, in which we refine pathway scores through correlation-guided gene subsetting. We also make comparisons to the TCGA and other publicly available melanoma datasets. Comparison of the gene expression patterns to each other, to established biological modules, and to clinical and immunohistochemical data confirmed the fidelity of biological signals from both platforms using FFPE samples to known biology. Moreover, correlations with patient outcome data were consistent with previous frozen-tissue-based studies. FFPE samples from previously difficult-to-access cancer types - such as small primary melanomas - represents a valuable and previously unexploited source of analyte for RNA-seq and NanoString platforms. This work provides an important step towards the use of such platforms to unlock novel molecular underpinnings and inform future biologically-driven clinical decisions.
Project description:ObjectiveThe biology of high grade serous ovarian carcinoma (HGSOC) is poorly understood. Little has been reported on intratumoral homogeneity or heterogeneity of primary HGSOC tumors and their metastases. We evaluated the global protein expression profiles of paired primary and metastatic HGSOC from formalin-fixed, paraffin-embedded (FFPE) tissue samples.MethodsAfter IRB approval, six patients with advanced HGSOC were identified with tumor in both ovaries at initial surgery. Laser capture microdissection (LCM) was used to extract tumor for protein digestion. Peptides were extracted and analyzed by reversed-phase liquid chromatography coupled to a linear ion trap mass spectrometer. Tandem mass spectra were searched against the UniProt human protein database. Differences in protein abundance between samples were assessed and analyzed by Ingenuity Pathway Analysis software. Immunohistochemistry (IHC) for select proteins from the original and an additional validation set of five patients was performed.ResultsUnsupervised clustering of the abundance profiles placed the paired specimens adjacent to each other. IHC H-score analysis of the validation set revealed a strong correlation between paired samples for all proteins. For the similarly expressed proteins, the estimated correlation coefficients in two of three experimental samples and all validation samples were statistically significant (p < 0.05). The estimated correlation coefficients in the experimental sample proteins classified as differentially expressed were not statistically significant.ConclusionA global proteomic screen of primary HGSOC tumors and their metastatic lesions identifies tumoral homogeneity and heterogeneity and provides preliminary insight into these protein profiles and the cellular pathways they constitute.
Project description:DNA methylation is the most studied epigenetic modification due to its role in regulating gene expression, and its involvement in the pathogenesis of cancer and several diseases upon aberrations in methylation. The method of choice to evaluate genome-wide methylation has been the Illumina HumanMethylation450 BeadChip (450K), but it was recently replaced with the MethylationEPIC BeadChip (EPIC). We therefore sought to validate the EPIC array in comparison to the 450K array for both fresh-frozen (FF) and formalin-fixed paraffin-embedded (FFPE) tumours. We also performed analysis on the EPIC array with paired FF and FFPE samples to adapt to a clinical setting where FFPE is routinely used. Further, we compared two restoration methods, REPLI-g and Infinium, for FFPE-derived DNA on the EPIC array. The Pearson correlation of β values for common probes on the 450K and EPIC array was high for both FF (mean: 0.992) and FFPE (mean: 0.984) samples. The β values generated from the EPIC array for FFPE samples correlated well with the paired FF tumours, but varied between 0.901 and 0.987. We did note that sample pairs with lower correlation had less bimodal density distributions of β values and displayed higher noise in the copy number alteration plots (generated from the methylation array data) in the FFPE sample. Both REPLI-g and the Infinium restoration for FFPE samples performed well on the EPIC array and generated equivalent correlation scores to the paired FF sample.
Project description:Archived formalin-fixed paraffin-embedded (FFPE) samples are the global standard format for preservation of the majority of biopsies in both basic research and translational cancer studies, and profiling chromatin accessibility in the archived FFPE tissues is fundamental to understanding gene regulation. Accurate mapping of chromatin accessibility from FFPE specimens is challenging because of the high degree of DNA damage. Here, we first showed that standard ATAC-seq can be applied to purified FFPE nuclei but yields lower library complexity and a smaller proportion of long DNA fragments. We then present FFPE-ATAC, the first highly sensitive method for decoding chromatin accessibility in FFPE tissues that combines Tn5-mediated transposition and T7 in vitro transcription. The FFPE-ATAC generates high-quality chromatin accessibility profiles with 500 nuclei from a single FFPE tissue section, enables the dissection of chromatin profiles from the regions of interest with the aid of hematoxylin and eosin (H&E) staining, and reveals disease-associated chromatin regulation from the human colorectal cancer FFPE tissue archived for >10 yr. In summary, the approach allows decoding of the chromatin states that regulate gene expression in archival FFPE tissues, thereby permitting investigators to better understand epigenetic regulation in cancer and precision medicine.
Project description:Formalin-fixed paraffin-embedded (FFPE) tissues are among the most widely available clinical specimens. Their potential utility as a source of RNA for transcriptome studies would greatly enhance population-based cancer studies. Although preliminary studies suggest FFPE tissue may be used for RNA sequencing, the effect of storage time on these specimens needs to be determined. We conducted this study to determine whether RNA in archived FFPE high-grade ovarian serous adenocarcinomas from Surveillance, Epidemiology and End Results (SEER) registries was present in sufficient quantity and quality for RNA-Seq analysis. FFPE tissues, stored from 7 to 32 years, were obtained from three SEER sites. RNA was extracted, quantified, quality assessed, and subjected to RNA-Seq (a whole transcriptome sequencing technology). FFPE specimens stored for longer periods of time had poorer RNA sample quality as indicated by negative correlations between specimen storage time and fragment distribution values (DV). In addition, sample contamination was a common issue among the RNA, with 41 of 67 samples having 5% to 48% bacterial contamination. However, regardless of specimen storage time and bacterial contamination, 60% of the samples yielded data that enabled gene expression quantification, identifying more than 10,000 genes, with the correlations among most biological replicates above 0.7. This study demonstrates that FFPE high-grade ovarian serous adenocarcinomas specimens stored in repositories for up to 32 years and under varying storage conditions are a promising source of RNA for RNA-Seq. We also describe certain caveats to be considered when designing RNA-Seq studies using archived FFPE tissues.
Project description:A molecular test performed using fresh-frozen tissue was proposed for use in the prognosis of patients with pleural mesothelioma. The accuracy of the test and its properties was assessed under Clinical Laboratory Improvement Amendments-approved guidelines using FFPE tissue from an independent multicenter patient cohort. Concordance studies were performed using matched frozen and FFPE mesothelioma samples. The prognostic value of the test was evaluated in an independent validation cohort of 73 mesothelioma patients who underwent surgical resection. FFPE-based classification demonstrated overall high concordance (83%) with the matched frozen specimens, on removal of cases with low confidence scores, showing sensitivity and specificity in predicting type B classification (poor outcome) of 43% and 98%, respectively. Concordance between research and clinical methods increased to 87% on removal of low confidence cases. Median survival times in the validation cohort were 18 and 7 months in type A and type B cases, respectively (P = 0.002). Multivariate classification adding pathologic staging information to the gene expression score resulted in significant stratification of risk groups. The median survival times were 52 and 14 months in the low-risk (class 1) and intermediate-risk (class 2) groups, respectively. The prognostic molecular test for mesothelioma can be performed on FFPE tissues to predict survival, and can provide an orthogonal tool, in combination with established pathologic parameters, for risk evaluation.
Project description:BackgroundInvestigating the expression of candidate genes in tissue samples usually involves either immunohistochemical labelling of formalin-fixed paraffin-embedded (FFPE) sections or immunofluorescence labelling of cryosections. Although both of these methods provide essential data, both have important limitations as research tools. Consequently, there is a demand in the research community to be able to perform routine, high quality immunofluorescence labelling of FFPE tissues.ResultsWe present here a robust optimised method for high resolution immunofluorescence labelling of FFPE tissues, which involves the combination of antigen retrieval, indirect immunofluorescence and confocal laser scanning microscopy. We demonstrate the utility of this method with examples of immunofluorescence labelling of human kidney, human breast and a tissue microarray of invasive human breast cancers. Finally, we demonstrate that stained slides can be stored in the short term at 4 degrees C or in the longer term at -20 degrees C prior to images being collected. This approach has the potential to unlock a large in vivo database for immunofluorescence investigations and has the major advantages over immunohistochemistry in that it provides higher resolution imaging of antigen localization and the ability to label multiple antigens simultaneously.ConclusionThis method provides a link between the cell biology and pathology communities. For the cell biologist, it will enable them to utilise the vast archive of pathology specimens to advance their in vitro data into in vivo samples, in particular archival material and tissue microarrays. For the pathologist, it will enable them to utilise multiple antibodies on a single section to characterise particular cell populations or to test multiple biomarkers in limited samples and define with greater accuracy cellular heterogeneity in tissue samples.
Project description:Formalin fixed paraffin embedded (FFPE) tissues are a vast resource of annotated clinical samples. As such, they represent highly desirable and informative materials for the application of high definition genomics for improved patient management and to advance the development of personalized therapeutics. However, a limitation of FFPE tissues is the variable quality of DNA extracted for analyses. Furthermore, admixtures of non-tumor and polyclonal neoplastic cell populations limit the number of biopsies that can be studied and make it difficult to define cancer genomes in patient samples. To exploit these valuable tissues we applied flow cytometry-based methods to isolate pure populations of tumor cell nuclei from FFPE tissues and developed a methodology compatible with oligonucleotide array CGH and whole exome sequencing analyses. These were used to profile a variety of tumors (breast, brain, bladder, ovarian and pancreas) including the genomes and exomes of matching fresh frozen and FFPE pancreatic adenocarcinoma samples.