Expression analysis in H9-hESCs to induce naive pluripotency
Ontology highlight
ABSTRACT: Human preimplantation embryo development involves complex dynamic cellular and molecular events that lead to the establishment of the three lineages of the blastocyst â the trophectoderm, primitive endoderm and epiblast. Owing to limited resources of biological specimens, our understanding of how the earliest lineage commitments are regulated is limited. Here, we examined role for MCRS1, TET1, and THAP11 in inducing naive pluripotency in human embryonic stem cells in vitro. Human embryonic stem cells (H9) were nucleofected with piggybac constructs that encode for three genes (MCRS1, THAP11, TET1) followed by neomycin selection for 2 weeks to ensure stable integration. Overexpression of genes can be induced by doxycycline (dox) administration to the culture medium. Prior to dox treatment cells were cultured in conventional feeder-free conditions and then transferred to a feeder layer. Culture medium was switched from mTeSR to W8. Administration of dox and media change into 2i/LIF (2 inhibitors against MEK and GSK3 pathway + leukemia inhibitory factor) induces the overexpression of piggybac constructs and over time transitions primed pluripotent hESCs into a naive pluripotent state. Both pluripotent states were examined with microarrays in three biological replicates for each condition. MCRS1 = microspherule protein 1; TET1 = tet methylcytosine dioxygenase 1; THAP11 = THAP domain containing 11
Project description:We generated human induced pluripotent cells from intellectual disability patients carrying the c.2T>C mutation in KDM5C (Called “Mutant”). We generated a paired, isogenic human iPS cell line (called “Corrected”) using CRISPR/Cas9 and PiggyBac gene-editing technologies and conducted neuronal differentiation based on “Yichen Shi et al. Nat. Protoc. 7, 1836–1846 (2012)” to define differences in gene expression between the Mutant and Corrected during neurodevelopment.
Project description:TET1 maintains hypomethylation at bivalent promoters through its catalytic activity in embryonic stem cells (ESCs). However, whether and how TET1 exerts catalytic activity-independent functions in regulating bivalent genes is not well understood. Therefore, we mapped the TET1 interactome in mouse ESCs using a SILAC IP-MS proteomics approach.
Project description:Precise regulation of DNA methylation in mammals is critical for genome stability and epigenetic regulation. The discovery of the ten-eleven translocation (TET) proteins catalyzing the oxidation from 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) revolutionized the perspective on the complexity and regulation of DNA modifications. Despite accumulating knowledge about the role of TET1, it remains unclear to what extent these can be attributed to its catalytic activity. Here, we use genome engineering and quantitative multi-omics approaches to dissect the role and mechanism of TET1 in mESCs. Our study identifies TET1 as an essential interaction hub for multiple chromatin modifying complexes and as a global regulator of histone modifications. Strikingly, we find that the majority of transcriptional regulation depends on non-catalytic functions of TET1. Moreover, we show that the establishment of H3K9me3 and H4K20me3 at ERV1, ERVK, and ERVL is mediated by TET1 independent of DNA demethylation. We provide evidence that repression of endogenous retroviruses depends on the interaction between TET1 and SIN3A. In summary, we demonstrate that the non-catalytic functions of TET1 are critical for regulation of gene expression and the silencing of endogenous retroviruses in mESCs.
Project description:Sall4 is a stem cell factor which is important for embryogenesis. In order to address transcriptional changes, we re-introduce Sall4 in homozygous Sall4 knockout (KO) mouse embryonic stem cells through random integration of Sall4 cDNA using a Piggybac vector which is Dox inducible. We also re-introduce EGFP in homozygous Sall4 knockout (KO) mouse embryonic stem cells and use it as a negative control.
Project description:The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. The differentiation phenotype due to Tet1 depletion positively correlated with the extent of 5hmC loss. Meta-analyses of genomic datasets suggested interaction between Tet1 and leukemia inhibitory factor (LIF) signaling. LIF signaling is known to promote self-renewal and pluripo-tency in mESCs partly by opposing MAPK/ERK mediated differentiation. Withdrawal of LIF leads to differentiation of mESCs. We discovered that Tet1 depletion impaired LIF-dependent Stat3-mediated gene activation by affecting Stat3's ability to bind to its target sites on chromatin. Nanog overexpression or inhibition of MAPK/ERK signaling, both known to maintain mESCs in the absence of LIF, rescued Tet1 depletion, further supporting the dependence of LIF/Stat3 signaling on Tet1. These data support the conclusion that analysis of mESCs in the hours/days immediately following efficient Tet1 depletion reveals Tet1’s normal physiological role in maintaining the pluripotent state that may be subject to homeostatic compensation in genetic models. Genome-wide mapping of 5hmC and microarray gene expression profiling in E14Tg2a mESCs after transfection with indicated siRNAs: Tet1 siRNA #1 (Invitrogen, MSS284895), Tet1 siRNA #2 (Invitrogen, MSS284897), and Control siRNA duplex targeting firefly luciferase.
Project description:We report that full length TET1 (TET1-FL) overexpression fails to induce global DNA demethylation in HEK293T cells. The preferential binding of TET1-FL to hypomethylated CpG islands (CGIs) through its CXXC domain leads to its inhibited 5-hydroxymethylcytosine (5hmC) production as methylation level increases. TET1-FL-induced 5hmC accumulates at CGI edges, while TET1 knockdown induces methylation spreading from methylated edges into hypomethylated CGIs. However, TET1 can regulate gene transcription independent of its dioxygenase catalytic function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically maintains the DNA hypomethylation state of CGIs in adult cells. HEK293T cells were transfected with wild type or catalytically mutant TET1 expression plasmids (TET1-CD, mTET1-CD, TET1-FL and mTET1-FL), or subjected to shRNA-mediated TET1 knockdown. Total RNA samples were extracted and assayed on Affymetrix microarrays
Project description:Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. We have recently demonstrated that Tet1 is specifically expressed in murine embryonic stem (ES) cells and is required for ES cell self-renewal and maintenance. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), here we show that Tet1 is preferentially bound to CpG-rich sequences at promoters of both transcriptionally active and Polycomb-repressed genes. Despite a general increase in levels of DNA methylation at Tet1 binding-sites, Tet1 depletion does not lead to down-regulation of all the Tet1 targets. Interestingly, while Tet1-mediated promoter hypomethylation is required for maintaining the expression of a group of transcriptionally active genes, it is also required for repression of Polycomb-targeted developmental regulators. Tet1 contributes to silencing of this group of genes by facilitating recruitment of PRC2 to CpG-rich gene promoters. Thus, our study not only establishes a role for Tet1 in modulating DNA methylation levels at CpG-rich promoters, but also reveals a dual function of Tet1 in promoting transcription of pluripotency factors as well as participating in the repression of Polycomb-targeted developmental regulators. To determine the genome-wide distribution of Tet1 in mouse ES cells, we have performed ChIP-seq experiments using Tet1 antibodies in control knockdown (KD) and Tet1 KD ES cells.
Project description:Epigenetic modification of the mammalian genome by DNA methylation (5-methylcytosine) has a profound impact on chromatin structure, gene expression and maintenance of cellular identity. Recent demonstration that members of the Ten-eleven translocation (Tet) family proteins can convert 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC) raised the possibility that Tet proteins are capable of establishing a distinct epigenetic state. We have recently demonstrated that Tet1 is specifically expressed in murine embryonic stem (ES) cells and is required for ES cell self-renewal and maintenance. Using chromatin immunoprecipitation coupled with high-throughput DNA sequencing (ChIP-seq), here we show that Tet1 is preferentially bound to CpG-rich sequences at promoters of both transcriptionally active and Polycomb-repressed genes. Despite a general increase in levels of DNA methylation at Tet1 binding-sites, Tet1 depletion does not lead to down-regulation of all the Tet1 targets. Interestingly, while Tet1-mediated promoter hypomethylation is required for maintaining the expression of a group of transcriptionally active genes, it is also required for repression of Polycomb-targeted developmental regulators. Tet1 contributes to silencing of this group of genes by facilitating recruitment of PRC2 to CpG-rich gene promoters. Thus, our study not only establishes a role for Tet1 in modulating DNA methylation levels at CpG-rich promoters, but also reveals a dual function of Tet1 in promoting transcription of pluripotency factors as well as participating in the repression of Polycomb-targeted developmental regulators. Mouse ES cells infected with control knockdown (KD) or Tet1 KD lentiviruses were FACS-sorted for RNA extraction and hybridization on Affymetrix microarrays. We also investigated the effect of Nanog overexpression (OE) in Tet1 KD mouse ES cells on dys-regulated Tet1 targets. We have collected four biologically independent replicates for each treatment.
Project description:We report that full length TET1 (TET1-FL) overexpression fails to induce global DNA demethylation in HEK293T cells. The preferential binding of TET1-FL to hypomethylated CpG islands (CGIs) through its CXXC domain leads to its inhibited 5-hydroxymethylcytosine (5hmC) production as methylation level increases. TET1-FL-induced 5hmC accumulates at CGI edges, while TET1 knockdown induces methylation spreading from methylated edges into hypomethylated CGIs. However, TET1 can regulate gene transcription independent of its dioxygenase catalytic function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically maintains the DNA hypomethylation state of CGIs in adult cells. hMeDIP-seq analysis of genomic 5-hydroxymethylcytosine in HEK293T cells overexpressing mTET1-CD, TET1-CD, mTET1-FL, or TET1-FL
Project description:We report that full length TET1 (TET1-FL) overexpression fails to induce global DNA demethylation in HEK293T cells. The preferential binding of TET1-FL to hypomethylated CpG islands (CGIs) through its CXXC domain leads to its inhibited 5-hydroxymethylcytosine (5hmC) production as methylation level increases. TET1-FL-induced 5hmC accumulates at CGI edges, while TET1 knockdown induces methylation spreading from methylated edges into hypomethylated CGIs. However, TET1 can regulate gene transcription independent of its dioxygenase catalytic function. Thus, our results identify TET1 as a maintenance DNA demethylase that does not purposely decrease methylation levels, but specifically maintains the DNA hypomethylation state of CGIs in adult cells. Genome-wdie profiling of gene expression in HEK293T cells following overexpression of wild type or catalytically mutant TET1-FL or TET1-CD