RNA-seq of barley lines after dehydration, spider mite or combined stress.
Ontology highlight
ABSTRACT: Drought and herbivores are main threats to crop production. Barley plants were subjected to dehydration, spider mite attack or to a combination of both stresses. RNA-seq analyses were done to know how individual and double abiotic-biotic stresses promote changes in the transcriptome.
Project description:Spider mites, including the two-spotted spider mite (Tetranychus urticae, TSSM) and the Banks grass mite (Oligonychus pratensis, BGM), are becoming increasingly important agricultural pests. The TSSM is an extreme generalist documented to feed on more than 1100 plant hosts. In contrast, the BGM is a grass specialist, with hosts including important cereal crops like maize, wheat, sorghum and barley. Historically, studies of plant-herbivore interactions have focused largely on insects. However, far less is known about plant responses to spider mite herbivores, especially in grasses, and whether responses differ between generalists and specialists. To identify plant defense pathways responding to spider mites, we collected time course RNA-seq data from barley (Hordeum vulgare L.) infested with TSSMs and BGMs. Additionally, and as a comparison to the physical damage caused by spider mite feeding, a wounding treatment was also included. The experiment was performed with four biological replicates across each of the following (28 samples in total): no infestation (C, control), 2hr after wounding (W2), 24hr after wounding (W24), 2hr after TSSM infestation (T2), 24hr after TSSM infestation (T24), 2hr after BGM infestation (B2), and 24hr after BGM infestation (B24).
Project description:The Arabidopsis/Tetranychus urticae pair is a model to analyze the response of the plant to the infestation with phytophagous mites. To deep into the effects of environmental conditions on the response of the plant, we compare the transcriptomes of plants grown at standard conditions with plants grown at low humidity and/or mild warm temperature. Comparisons were performed without a second stressor and after 30 min of mite infestation.
Project description:This SuperSeries is composed of the following subset Series: GSE31525: Spider mite preliminary feeding experiment with mites reared on bean and two Arabidopsis thaliana accessions GSE31527: Developmental stage-specific gene expression in the two-spotted spider mite (Tetranychus urticae) GSE32005: Developmental stage-specific small RNA composition in the two-spotted spider mite (Tetranychus urticae) GSE32009: Transcriptional responses of the two-spotted spider mite (Tetranychus urticae) after transfer to different plant hosts Refer to individual Series
Project description:We generated 77-bp Illumina reads from single messenger RNA libraries from four diverse developmental stages of the two-spotted spider mite to maximally capture the complement of transcribed sequences across development. Adult, nymphal, larvae and embryonic stages were separated using sieves of various pore sizes, and mites of various developmental stages were carefully selected for transcriptome library preparation. Samples were a mix of males and females to capture male and female patterns of transcription, and were reared on beans (Phaseolus vulgaris cv California Red Kidney). The RNA-Seq data was used for validation of gene models predicted by EuGene, and to study patterns of gene expression across development. Gene expression for spider mites from adult, nymph, larvae and embryonic developmental stages was examined (technical replicates were generated).
Project description:The Arabidopsis/Tetranychus urticae pair is a model to analyze the response of the plant to the infestation with phytophagous acari. To deep into the short-term response of the plant, a time series was performed starting upon 30 min of infestation. Additional time points at 1h, 3h and 24h were selected to study the progression of the plant response.
Project description:We generated 38-bp Illumina reads from single messenger RNA libraries from three diverse developmental stages of the two-spotted spider mite to capture small RNA diversity across development. Adult, nymphal+larvae and embryonic stages were separated using sieves of various pore sizes, and mites of various developmental stages were carefully selected for small RNA library preparation. Samples were a mix of males and females to capture male and female patterns of small RNA composition and were reared on beans (Phaseolus vulgaris cv California Red Kidney). Small RNA reads were used for miRNA prediction, piRNA discovery, and for quantitation of small RNA-generating loci (i.e. expression across development). Examination of small RNA from spider mites of adult, embryonic and pooled larval/nymphal developmental stages.
Project description:HvPap-1 is a C1A cysteine protease from barley that has been associated to endogenous processes and responds to abiotic and biotic stresses. Overexpressing and silencing lines were constructed to test the response of plants with variations in the levels of HvPap-1 to different stresses. RNA-seq analyses were done to know how changes in HvPap-1 expression levels affect the expression of other genes and the effect of these changes in the response of the plant.
Project description:The two-spotted spider mite Tetranychus urticae is an extreme polyphaguous crop pest. Next to an increased detoxification potential of plant secondary metabolites, it has recently been shown that spider mites manipulate plant defences. Salivary constituents are proposed to play an important role during the interaction with its many hosts. The proteomic composition of saliva delivered into artificial diet by spider mites adapted to various hosts - bean, soy, maize, tomato -was determined using Orbitrap mass spectrometry. Over 200 different proteins were identified, many of unknown function and in numerous cases belonging to multi-membered gene families. A selection of these putative salivary proteins was validated using whole-mount in situ hybridizations and expression was shown to be localized in the anterior and dorsal podocephalic glands of the spider mite. Host-plant dependent expression was evident from the proteomics dataset and was further studied in detail by micro-array based genome wide gene expression profiling of mites maintained on the host plants under study. Previously obtained gene-expression datasets were further used to get more insight in the expression profile over different life stages and physiological states. To conclude, for the first time the T. urticae salivary proteome repertoire was characterized using a custom feeding hemisphere-based enrichment technique. This knowledge will assist in unraveling the molecular interactions between phytophagous mites and their host plants. This may ultimately facilitate the development of mite-resistant crops.
Project description:Cultivated rice (Oryza sativa L.) is frequently exposed to multiple stresses, including Schizotetranychus oryzae mite infestation. Rice domestication has narrowed the genetic diversity of the species, leading to a wide susceptibility. This work aimed to observe the response of two wild rice species (Oryza barthii and O. glaberrima) and two O. sativa genotypes (cv. Nipponbare and f. spontanea) to S. oryzae infestation. Surprisingly, leaf damage, histochemistry, chlorophyll concentration and fluorescence showed that the wild species present higher level of leaf damage, increased accumulation of H2O2 and lower photosynthetic capacity when compared to O. sativa genotypes under infested conditions. Infestation decreased tiller number, except in Nipponbare. Infestation also caused the death of wild plants during the reproductive stage. While infestation did not affect the weight of 1,000 grains in both O. sativa genotypes, the number of panicles per plant was affected only in f. spontanea, and the percentage of full seeds per panicle and seed length were increased only in Nipponbare. Using proteomic analysis, we identified 195 differentially abundant proteins when comparing susceptible (O. barthii) and tolerant (Nipponbare) genotypes under control and infested conditions. O. barthii has a less abundant antioxidant arsenal and is unable to modulate proteins involved with general metabolism and energy production under infested condition. Nipponbare presents high abundance of detoxification-related proteins, general metabolic processes and energy production, suggesting that, under infested condition, the primary metabolism is maintained more active compared to O. barthii. Also, under infested conditions, Nipponbare presents higher levels of proline and a greater abundance of defense-related proteins, such as osmotin, ricin B-like lectin, and protease inhibitors. These differentially abundant proteins can be used as biotechnological tools in breeding programs aiming increased tolerance to mite infestation.
Project description:Five-week old tomato plants were subjected to four treatments: 1) mock-inoculated, 2) virus-infected, 3) spider mite infestation, and 4) virus + spider mite infestation. Plant tissue was harvested from each treatment after 7-days, frozen in liquid nitrogen and stored in -80 degree Celsius until use.