ABSTRACT: Bulk ATAC-seq was performed on human, chimpanzee, bonobo, and macaque stem cell-derived cerebral organoids. ATAC-seq was performed on day 60 (2 months old) and day 120 (4 months old) cerebral organoids.
Project description:Single cell ATAC-seq (scATAC-seq) was performed on bonobo induced pluripotent stem cells (iPSC) derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid) and day 120 (4 months old cerebral organoid).
Project description:Single cell ATAC-seq (scATAC-seq) was performed at various stages of differentiation of human pluripotent stem cells to 4 month old cerebral organoids. scATAC-seq was performed on the following days of differentiation: day 0 (pluripotent stem cell), day 4 (embryoid body), day 10 (neuroectoderm), day 15 (neuroepithelium), day 30 (1 month old cerebral organoid), day 60 (2 months old cerebral organoid), and day 120 (4 months old cerebral organoid).
Project description:To investigate the heterogeneity during the neuroepithelial stage of organoid development, we performed a multiome experiment on day 15-18 old brain organoids
Project description:Single cell ATAC-seq (scATAC-seq) was performed on macaque embryonic stem cell-derived cerebral organoids. scATAC-seq was performed on day 60 (2 months old cerebral organoid).
Project description:The human brain has changed dramatically from other primate species, but the genetic and developmental mechanisms behind the differences remains unclear. Here we used single cell RNA sequencing based on 10X technology to explore temporal transcriptomic dynamics and cellular heterogeneity in cerebral organoids derived from human and non-human primates chimpanzee and rhesus macaque stem cells. Using cerebral organoids as a proxy of early brain development, we detect a delayed pace of human brain development relative to the other two primate species. Additional human-specific gene expression patterns resolved to different cell states through progenitors to neurons are also found. Our data provide a transcriptomic cell atlas of primate early brain development, and illustrate features that are unique to humans.
Project description:This study demonstrates cellular and molecular mechanisms regulating the generation and function of basal radial glia (bRG), a neural stem cell population that was shown to be enriched in the developing human brain and was involved in the formation of cortical expansion. Here, we studied the role of LGALS3BP, a secreted protein whose RNA expression is enriched in bRGs. Based on a combination of three model systems i) in vitro human cerebral organoids, ii) ex vivo embryonic human fetal tissue and iii) in vivo embryonic mouse cortex, and a wide variety of techniques including single-cell RNA-sequencing, proteomics, and immunostaining, we characterized the role of human LGALS3BP mutations.
Project description:We have performed ChIP-seq of H3K27ac and H3K4me3 histone post-translational modifications at three stages during induced neural differentiation (ESCs, neural progenitors and neurons). This data has allowed us to identify candidate enhancer-like signatures in the genome, which we have defined as regions that are enriched in H3K27ac and depleted of H3K4me3.
Project description:To study how methanol fixation affects single-cell transcriptomic measurement, two cerebral organoids were dissociated. Cell suspension of each organoid was split into two aliquots. Methanol fixation was applied to one of the two aliquots. Single-cell RNA-seq with 10x Genomics was applied to the two aliquots separately.
Project description:Reprogrammed somatic cells offer a valuable source of pluripotent cells that have the potential to differentiate into many cells types and provide a new tool for regenerative medicine. In the present study we differentiated induced pluripotent stem cells (iPS cells) into hepatic cells. We first showed that mouse iPS cells could from a complete liver in mouse embryo (E14.5) including hepatocytes, endothelial cells, sinusoidal cells and resident macrophages. We then designed a highly efficient hepatocyte differentiation protocol using defined factors on human embryonic stem cells (ES cells). This protocol was found to generate more than 80% albumin expressing cells that show hepatic functions and express most of liver genes as shown by microarray analyses. Similar results were obtained when human iPS cells were induced to differentiate following the same procedure. Experiment Overall Design: Total RNA was harvested from the following sources and used for Affymetrix array analysis following manufacturer defined protocols: Experiment Overall Design: 1) human foreskin fibroblasts, ATCC cell line CRL2097, 3 independent cultures Experiment Overall Design: 2) induced pluripotent stem (iPS) cells derived from CRL2097, 3 independent undifferentiated cultures Experiment Overall Design: 3) induced pluripotent stem (iPS) cells derived from CRL2097, 3 independent cultures harvested at day 20 (d20) of a hepatic differentiation protocol Experiment Overall Design: 4) WAO9 human embryonic stem cells, 3 independent undifferentiated cultures Experiment Overall Design: 5) WAO9 human embryonic stem cells, 3 independent cultures harvested at day 20 (d20) of a hepatic differentiation protocol. <br><br>This experiment was reloaded in November 2010 after additional curation