Patient-derived primary cultures of paediatric high grade glioma and DIPG - molecular profiling by methylation array (Infinium HumanMethylation450)
Ontology highlight
ABSTRACT: Molecular profiling by methylation array (Illumina Infinium HumanMethylation450K) in a panel of models generated under 2D (laminin matrix) and/or 3D (neurospheres) conditions fully credentialed by phenotypic and molecular comparison to the original tumour sample. Patient-derived in vitro primary cell cultures represent potentially useful tools for mechanistic and preclinical investigation based upon their retention of key features of tumour subgroups under experimental conditions amenable to high-throughput approaches.
Project description:Molecular profiling by methylation array (Illumina Infinium HumanMethylationEPIC) in a panel of models generated under 2D (laminin matrix) and/or 3D (neurospheres) conditions fully credentialed by phenotypic and molecular comparison to the original tumour sample. Patient-derived in vitro primary cell cultures represent potentially useful tools for mechanistic and preclinical investigation based upon their retention of key features of tumour subgroups under experimental conditions amenable to high-throughput approaches.
Project description:BackgroundDNA methylation is indispensible for normal human genome function. Currently there is an increasingly large number of DNA methylomic data being released in the public domain allowing for an opportunity to investigate the relationships between the DNA methylome, genome function, and human phenotypes. The Illumina450K is one of the most popular platforms for assessing DNA methylation with over 10,000 samples available in the public domain. However, accessing all this data requires downloading each individual experiment and due to inconsistent annotation, accessing the right data can be a challenge.DescriptionHere we introduce 'Marmal-aid', the first standardised database for DNA methylation (freely available at http://marmal-aid.org). In Marmal-aid, the majority of publicly available Illumina HumanMethylation450 data is incorporated into a single repository allowing for re-processing of data including normalisation and imputation of missing values. The database is accessible in two ways: (1) Using an R package to allow for incorporation into existing analysis pipelines which can then be easily queried to gain insight into the functionality of certain CpG sites. This is aimed at a bioinformatician with experience in R. (2) Using a graphical interface allowing general biologists to query a pre-defined set of tissues (currently 15) providing a reference database of the methylation state in these tissues for the 450,000 CpG sites profiled by the Illumina HumanMethylation450.ConclusionMarmal-aid is the largest publicly available Illumina HumanMethylation450 methylation database combining Illumina HumanMethylation450 data from a number of sources into a single location with a single common annotation format. This allows for automated extraction using the R package and inclusion into existing analysis pipelines. Marmal-aid also provides a easy to use GUI to visualise methylation data in user defined genomic regions for various reference tissues.
Project description:We have used Illumina Infinium HumanMethylation450 BeadChip array profiling to profile paediatric high grade gliomas and diffuse intrinsic pontine gliomas. The 450K methylation array is being used to separate brain tumour samples on the basis of their methylation profiles which represent the cell of origin the time and place in which tumours arise. Methylation arrays provide data for an integrated molecular diagnosis of brain tumours and define specific molecular subgroups and subtypes of high grade gliomas carrying distinct driver mutations and patterns of somatic alterations. These data form part of an integrated meta-analysis of high grade gliomas in children combining DNA copy number, methylation and high throughput sequencing datasets.
Project description:We have used Illumina Infinium HumanMethylation450 BeadChip array profiling to profile paediatric high grade gliomas within the HERBY clinical trial. The HERBY trial was a phase-II open-label, randomised, multicentre trial evaluating bevacizumab in patients with newly-diagnosed non-brainstem HGG between the ages of 3-18yrs. The 450K methylation array was used to separate brain tumour samples on the basis of their methylation profiles which represent the cell of origin the time and place in which tumours arise. Methylation arrays provide data for an integrated molecular diagnosis of brain tumours and define specific molecular subgroups and subtypes of high grade gliomas carrying distinct driver mutations and patterns of somatic alterations.
Project description:BIOMEDE (NCT02233049) was a phase II, biopsy-driven clinical trial in DIPG patients with randomisation of stratification between dasatinib, erlotinib and everolimus. Methylation array profiling was carried out alongside drug screening in newly-established patient-derived models of DIPG in vitro and in vivo. Alongside exome, RNAseq, phospho-proteomics, these data highlight the MAPK pathway as a therapeutic target in DIPG, and show the importance of parallel resistance modelling and rational combinatorial treatment
Project description:DNA methylation is the most widely studied epigenetic mark and is known to be essential to normal development and frequently disrupted in disease. The Illumina HumanMethylation450 BeadChip assays the methylation status of CpGs at 485,577 sites across the genome. Here we present Subset-quantile Within Array Normalization (SWAN), a new method that substantially improves the results from this platform by reducing technical variation within and between arrays. SWAN is available in the minfi Bioconductor package.
Project description:BACKGROUND:DNA methylation has been identified to be widely associated to complex diseases. Among biological platforms to profile DNA methylation in human, the Illumina Infinium HumanMethylation450 BeadChip (450K) has been accepted as one of the most efficient technologies. However, challenges exist in analysis of DNA methylation data generated by this technology due to widespread biases. RESULTS:Here we proposed a generalized framework for evaluating data analysis methods for Illumina 450K array. This framework considers the following steps towards a successful analysis: importing data, quality control, within-array normalization, correcting type bias, detecting differentially methylated probes or regions and biological interpretation. CONCLUSIONS:We evaluated five methods using three real datasets, and proposed outperform methods for the Illumina 450K array data analysis. Minfi and methylumi are optimal choice when analyzing small dataset. BMIQ and RCP are proper to correcting type bias and the normalized result of them can be used to discover DMPs. R package missMethyl is suitable for GO term enrichment analysis and biological interpretation.
Project description:Illumina's Infinium HumanMethylation450 BeadChip arrays were used to examine genome-wide DNA methylation profiles in 22 sample pairs from colorectal cancer (CRC) and adjacent tissues and 19 colon tissue samples from cancer-free donors. We show that the methylation profiles of tumors and healthy tissue samples can be clearly distinguished from one another and that the main source of methylation variability is associated with disease status. We used different statistical approaches to evaluate the methylation data. In general, at the CpG-site level, we found that common CRC-specific methylation patterns consist of at least 15,667 CpG sites that were significantly different from either adjacent healthy tissue or tissue from cancer-free subjects. Of these sites, 10,342 were hypermethylated in CRC, and 5,325 were hypomethylated. Hypermethylated sites were common in the maximum number of sample pairs and were mostly located in CpG islands, where they were significantly enriched for differentially methylated regions known to be cancer-specific. In contrast, hypomethylated sites were mostly located in CpG shores and were generally sample-specific. Despite the considerable variability in methylation data, we selected a panel of 14 highly robust candidates showing methylation marks in genes SND1, ADHFE1, OPLAH, TLX2, C1orf70, ZFP64, NR5A2, and COL4A. This set was successfully cross-validated using methylation data from 209 CRC samples and 38 healthy tissue samples from The Cancer Genome Atlas consortium (AUC = 0.981 [95% CI: 0.9677-0.9939], sensitivity = 100% and specificity = 82%). In summary, this study reports a large number of loci with novel differential methylation statuses, some of which may serve as candidate markers for diagnostic purposes.
Project description:This study is trying to provide guildeline on how to identify the most optimal pre-processing method for Illumina HumanMethylation450k BeadChips array on prostate cancer dataset.
Project description:DNA methylation, an important type of epigenetic modification in humans, participates in crucial cellular processes, such as embryonic development, X-inactivation, genomic imprinting and chromosome stability. Several platforms have been developed to study genome-wide DNA methylation. Many investigators in the field have chosen the Illumina Infinium HumanMethylation microarray for its ability to reliably assess DNA methylation following sodium bisulfite conversion. Here, we analyzed methylation profiles of 489 adult males and 357 adult females generated by the Infinium HumanMethylation450 microarray. Among the autosomal CpG sites that displayed significant methylation differences between the two sexes, we observed a significant enrichment of cross-reactive probes co-hybridizing to the sex chromosomes with more than 94% sequence identity. This could lead investigators to mistakenly infer the existence of significant autosomal sex-associated methylation. Using sequence identity cutoffs derived from the sex methylation analysis, we concluded that 6% of the array probes can potentially generate spurious signals because of co-hybridization to alternate genomic sequences highly homologous to the intended targets. Additionally, we discovered probes targeting polymorphic CpGs that overlapped SNPs. The methylation levels detected by these probes are simply the reflection of underlying genetic polymorphisms but could be misinterpreted as true signals. The existence of probes that are cross-reactive or of target polymorphic CpGs in the Illumina HumanMethylation microarrays can confound data obtained from such microarrays. Therefore, investigators should exercise caution when significant biological associations are found using these array platforms. A list of all cross-reactive probes and polymorphic CpGs identified by us are annotated in this paper.