Unknown

Dataset Information

0

The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles.


ABSTRACT: A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from differences in data collection and processing over time, the amount of available data, and redundancy among performance measures. Our analyses suggest simple steps for overcoming these issues and promising directions for more robust research.

SUBMITTER: Schreiber J 

PROVIDER: S-EPMC10111747 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

The ENCODE Imputation Challenge: a critical assessment of methods for cross-cell type imputation of epigenomic profiles.

Schreiber Jacob Matthew JM   Boix Carles A CA   Wook Lee Jin J   Li Hongyang H   Guan Yuanfang Y   Chang Chun-Chieh CC   Chang Jen-Chien JC   Hawkins-Hooker Alex A   Schölkopf Bernhard B   Schweikert Gabriele G   Carulla Mateo Rojas MR   Canakoglu Arif A   Guzzo Francesco F   Nanni Luca L   Masseroli Marco M   Carman Mark James MJ   Pinoli Pietro P   Hong Chenyang C   Yip Kevin Y KY   Spence Jefrey P JP   Batra Sanjit Singh SS   Song Yun S YS   Mahony Shaun S   Zhang Zheng Z   Tan Wuwei W   Shen Yang Y   Sun Yuanfei Y   Shi Minyi M   Adrian Jessika J   Sandstrom Richard S RS   Farrell Nina P NP   Halow Jessica M JM   Lee Kristen K   Jiang Lixia L   Yang Xinqiong X   Epstein Charles B CB   Strattan J Seth JS   Bernstein Bradley E BE   Snyder Michael P MP   Kellis Manolis M   Noble William S WS   Kundaje Anshul Bharat AB  

Genome biology 20230418 1


A promising alternative to comprehensively performing genomics experiments is to, instead, perform a subset of experiments and use computational methods to impute the remainder. However, identifying the best imputation methods and what measures meaningfully evaluate performance are open questions. We address these questions by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. We find that imputation evaluations are challenging and confounded by distributional shifts from  ...[more]

Similar Datasets

| S-EPMC2795949 | biostudies-literature
| S-EPMC11843021 | biostudies-literature
| S-EPMC11863430 | biostudies-literature
| S-EPMC11569248 | biostudies-literature
| S-EPMC8424394 | biostudies-literature
| S-EPMC6314157 | biostudies-literature
| S-EPMC11574941 | biostudies-literature
| S-EPMC5368104 | biostudies-literature
| S-EPMC10406842 | biostudies-literature
| S-EPMC11519609 | biostudies-literature