Project description:IntroductionBladder cancer (BC) is one of the most common urologic malignancies and it is urgently needed to identify novel potential prognostic biomarkers for predicting prognosis and progression of patients with BC in clinical practice. Previous research has revealed that long noncoding RNAs (lncRNAs) played critical roles in BC, and may serve as novel potential prognostic biomarkers in patients with BC. Therefore, we conducted this meta-analysis to clarify the prognostic potential of lncRNAs in BC patients.MethodsA comprehensive search was performed in PubMed, Web of Science, and China National Knowledge Infrastructure (CNKI). According to the predefined exclusion and inclusion criteria, a total of 9 recently published articles comprising 13 lncRNAs and 666 BC patients were included into this meta-analysis. We analyzed the hazard ratios (HRs) and 95% confidence intervals (CIs) to determine the relationship between lncRNAs expression and survival outcomes. We also analyzed the odds ratio (ORs) and 95% confidence intervals (CIs) to assess the association between lncRNAs expression and clinicopathological characteristics, including histological grade, gender, multifocality, tumor size, and tumor stage.ResultsOur results revealed that high lncRNAs expression was associated with shorter overall survival in Asian BC patients (pooled HR = 2.32, 95% CI: 1.35-4.00, P = 0.002, random-effect). High lncRNAs expression levels were significantly associated with histological grade (G2-G3 vs. G1: OR = 3.857, 95%CI: 1.293-11.502, P = 0.015, random-effect).ConclusionsIn summary, this meta-analysis has demonstrated that lncRNAs could be used as potential prognostic markers for BC and high lncRNAs expression could predict poor prognosis among Asian BC patients.
Project description:Non-small cell lung cancer (NSCLC) is the most common type of lung cancer. The overall 5-year survival rate of patients is extremely low and to find a new marker is urgently needed. Numerous studies indicate that long noncoding RNAs (lncRNAs) abnormally express in cancers. However, the results have been disputed, especially in the aspects of tumor prognosis. Therefore, we performed this meta-analysis to systematically summarize the relationship between lncRNAs expression and NSCLC. A total of 34 eligible studies including 30 on overall survival, 10 on progression-free survival and 23 on clinicopathological features were identified from the databases. Our results indicated that the levels of lncRNAs were associated with the overall survival (OS; hazard ratios [HR], 1.43; 95% confidence interval [95% CI], 1.17-1.76; P < 0.001). However, there was no relationship between lncRNAs and progression-free survival (PFS; hazard ratios [HR], 1.55; 95% confidence interval [95% CI], 0.91-2.63; P = 0.11). Moreover, lncRNAs were related to lymph node metastasis (odds ratios [OR], 1.70; 95% confidence interval [95% CI], 1.03-2.80; P = 0.04), while no association was observed with other characteristics. In conclusion, our present meta-analysis indicated that lncRNAs transcription levels may serve as a promising marker for prognosis of patients with NSCLC.
Project description:Background and objectiveNasopharyngeal carcinoma (NPC) is a common head and neck malignancy. Despite recent advances in treatment, the prognosis, particularly for those at the advanced stages, remains poor. Moreover, the underlying genetic and molecular events have remained obscure so far. Recently, increasing evidence has demonstrated that long noncoding RNAs (lncRNAs) could act as either oncogenes or tumor suppressor genes in various cancers depending on their targets. And some lncRNAs have been shown to be aberrantly expressed in NPC. In this meta-analysis, we try to elucidate the possible role of lncRNAs and their expression on prognosis in NPC.MethodsWe searched the databases of PubMed, Embase, and Web of Science for relevant articles ranging from January 2000 to December 2017. Pooled hazard ratios (HRs) and 95% confidence intervals (CIs) were used to evaluate the prognostic value of lncRNAs in NPC. Odds ratios (ORs) were used to assess the association between lncRNAs and clinicopathological characteristics.ResultsA total of 14 eligible publications including 14 on prognosis and eight on clinicopathological characteristics were identified. Our results demonstrated that the high expression of lncRNAs was related to poor overall survival (OS; HR =1.55; 95% CI =1.01, 2.40; P=0.05) and disease-free survival (DFS; HR =1.83; 95% CI =1.07, 3.13; P=0.03) of NPC. Moreover, the expression of lncRNAs was correlated with male gender (OR =1.42; 95% CI =1.05, 1.91; P=0.02), lymph node status (OR =2.20; 95% CI =1.29, 3.73; P=0.004), and tumor node metastasis (TNM) clinical stage (OR =2.55; 95% CI =1.12, 5.78; P=0.03).ConclusionThis meta-analysis shows that the level of expression of lncRNAs may be a potential prognostic indicator in NPC.
Project description:The abnormally expressed LncRNAs played irreplaceable roles in the prognosis of prostate cancer (PCa). Therefore, we conducted this systematic review and meta-analysis to summarize the association between the expression of LncRNAs, prognosis and clinicopathology of PCa. 18 eligible studies were recruited into our analysis, including 18 on prognosis and 9 on clinicopathological features. Results indicated that aberrant expression of LncRNAs was significantly associated with biochemical recurrence-free survival (BCR-FS) (HR = 1.55, 95%CI: 1.01-2.37, P < 0.05), recurrence free survival (RSF) (HR = 3.07, 95%CI: 1.07-8.86, P < 0.05) and progression free survival (PFS) (HR = 2.34, 95%CI: 1.94-2.83, P < 0.001) in PCa patients. LncRNAs expression level was correlated with several vital clinical features, like tumor size (HR = 0.52, 95%CI: 0.28-0.95, P = 0.03), distance metastasis (HR = 4.55, 95%CI: 2.26-9.15, P < 0.0001) and histological grade (HR = 6.23, 95% CI: 3.29-11.82, P < 0.00001). Besides, down-regulation of PCAT14 was associated with the prognosis of PCa [over survival (HR = 0.77, 95%CI: 0.63-0.95, P = 0.01), BCR-FS (HR = 0.61, 95%CI: 0.48-0.79, P = 0.0001), prostate cancer-specific survival (HR = 0.64, 95%CI: 0.48-0.85, P = 0.002) and metastasis-free survival (HR = 0.61, 95%CI: 0.50-0.74, P < 0.00001)]. And, the increased SChLAP1 expression could imply the worse BCR-FS (HR = 2.54, 95%CI: 1.82-3.56, P < 0.00001) and correlate with Gleason score (< 7 vs ≥ 7) (OR = 4.11, 95% CI: 1.94-8.70, P = 0.0002). Conclusively, our present work demonstrated that LncRNAs transcription level might be potential prognostic markers in PCa.
Project description:Ovarian cancer (OC) is a highly malignant gynecologic tumor with few treatments available and poor prognosis with the currently available diagnostic markers and interventions. More effective methods for diagnosis and treatment are urgently needed. Although the current evidence implicates ferroptosis in the development and therapeutic responses of various types of tumors, it is unclear to what extent ferroptosis affects OC. To explore the potential of ferroptosis-related genes as biomarkers and molecular targets for OC diagnosis and intervention, this study collected several datasets from The Cancer Genome Atlas-OC (TCGA-OC), analyzed and identified the coexpression profiles of 60 ferroptosis-related genes and two subtypes of OC with respect to ferroptosis and further examined and analyzed the differentially expressed genes between the two subtypes. The results indicated that the expression levels of ferroptosis genes were significantly correlated with prognosis in patients with OC. Single-factor Cox and LASSO analysis identified eight lncRNAs from the screened ferroptosis-related genes, including lncRNAs RP11-443B7.3, RP5-1028K7.2, TRAM2-AS1, AC073283.4, RP11-486G15.2, RP11-95H3.1, RP11-958F21.1, and AC006129.1. A risk scoring model was constructed from the ferroptosis-related lncRNAs and showed good performance in the evaluation of OC patient prognosis. The high- and low-risk groups based on tumor scores presented obvious differences in clinical characteristics, tumor mutation burden, and tumor immune cell infiltration, indicating that the risk score has a good ability to predict the benefit of immunotherapy and may provide data to support the implementation of precise immunotherapy for OC. Although in vivo tests and research are needed in the future, our bioinformatics analysis powerfully supported the effectiveness of the risk signature of ferroptosis-related lncRNAs for prognosis prediction in OC. The findings suggest that these eight identified lncRNAs have great potential for development as diagnostic markers and intervention targets for OC and that patients with high ferroptosis-related lncRNA expression will receive greater benefits from conventional chemotherapy or treatment with ferroptosis inducers.
Project description:We investigated whether autophagy-related long noncoding RNAs (lncRNAs) can predict prognosis in bladder cancer. We obtained bladder cancer lncRNA data from The Cancer Genome Atlas and autophagy-related genes from the Human Autophagy Database. Fifteen autophagy-related lncRNAs with prognostic significance were identified. Multivariate Cox analysis was used to construct a risk score model, which divided bladder cancer patients into high-risk and low-risk groups. We found that patients in the low-risk group had better survival than those in the high-risk group. Subgroup analysis showed that patients in the high-risk group also had worse OS than that in the low-risk group in subgroups based on age, gender, clinical stage, and TNM stage. We next established a nomogram according to the results of multivariate Cox regression, which included age, gender, clinical stage, TNM stage, and risk score. The area under the curve for 3- and 5-year overall survival predicted by the nomogram were 0.711 and 0.719, respectively. Bioinformatics analysis demonstrated that the 15 identified lncRNAs are involved in the cell cycle, DNA replication, cell adhesion, cancer pathway, WNT signaling pathway, and oxidative stress. These findings confirm that autophagy-related lncRNAs are predictive of prognosis in bladder cancer patients and may affect tumor progression.
Project description:BackgroundAlthough expression of long non-coding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1) in tumor tissues has been assessed in several malignancies. However, the association between lncRNA MALAT-1 expression and prognosis or clinicopathological feature remains controversial. Therefore, we conducted a meta-analysis to verify whether lncRNA MALAT-1 expression was associated with prognosis or clinicopathological features in patients with non-small cell lung cancer (NSCLC).MethodsWe searched Embase, PubMed, Web of Science, Cochrane library, The Chinese National Knowledge Infrastructure, and Wanfang databases from inception to March, 1, 2020. The language restrictions were Chinese and English. The published literature on lncRNA MALAT-l expression and prognosis or clinicopathological characteristics of NSCLC patients was statistically analyzed. Combined hazard ratios (HRs), odds ratios (OR), and 95% confidence intervals (95% CIs) were used to evaluate the effects of lncRNA MALAT-l on the prognosis and clinicopathological features of NSCLC.ResultsFifteen studies with 1477 NSCLC patients were enrolled. The results showed that the elevated expression of lncRNA MALAT-l in tumor tissues was associated with shorter overall survival (OS) (HR: 2.20, 95% CI: 1.53-3.16; P = 0.000). Additionally, high lncRNA MALAT-l expression was also significantly associated with gender (OR: 0.69, 95% CI: 0.51-0.93; P = 0.014), tumor size (OR: 1.87, 95% CI:1.13-3.09; P = 0.016), lymph node metastasis (LNM) (OR: 2.87, 95% CI:1.05-7.83, P = 0.04), tumor differentiation (OR: 1.60, 95% CI:1.17-2.20; P = 0.003), and tumor-node-metastasis (TNM) stage (OR: 0.42, 95% CI: 0.25-0.70; P = 0.001). There was no significant relationship between lncRNA MALAT-l expression and other clinicopathological features including age (OR: 1.03, 95% CI: 0.79-1.34; P = 0.830), number of tumors (OR: 1.02, 95% CI: 0.63-1.64; P = 0.943), vascular invasion (OR: 1.23, 95% CI: 0.50-3.05; P = 0.652), and recurrence (OR: 1.98, 95% CI: 0.67-5.85; P = 0.214).ConclusionThe overexpression of lncRNA MALAT-l in NSCLC tissues was correlated with OS, gender, tumor size, LNM, tumor differentiation, and TNM stage. Thus, lncRNA MALAT-l may serve as a prognostic factor for NSCLC.
Project description:The molecular mechanism of osteosarcoma (OS) based on protein-coding genes has largely been studied in the past decades. However, much remains to be explored when it comes to the role that long noncoding RNAs (lncRNAs) play in the pathogenesis and progression of OS and how they are associated with OS metastasis. In the present study, we collected RNA-seq-based gene expression data of 82 OS samples from the Therapeutically Applicable Research To Generate Effective Treatments (TARGET) database, along with their clinical information. We found that 50 lncRNAs were significantly associated with patients' survival by univariable Cox regression model. Moreover, we built multivariable Cox regression model based on 7 lncRNAs and successfully stratified patients into two risk groups, which exhibited significantly different prognostic outcomes. Significantly enriched Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways detected by differential expression analysis on DEGs between the two groups with different prognostic outcomes were both immune-related, indicating that such GO terms and pathways are critical for OS survival. Among the seven lncRNA signatures, AC011442.1 was predicted to act as an oncogenic driver in OS by correlation analysis of copy number alteration (CNA) and lncRNA expression, and it was predicted to regulate AMPK and hedgehog signaling pathways. In summary, the identification of novel prognostic lncRNAs in OS could not only improved our understanding of the lncRNAs involved in OS tumorigenesis or progression but also assist the diagnosis and development of molecularly targeted therapies for OS, which in turn benefit patients' survival.
Project description:BACKGROUND:Compelling studies have demonstrated the correlation between aberrant expressed lncRNAs and human cancers, and revealed promise of these lncRNAs as biomarkers in predicting patients' survival and outcome. METHODS:We downloaded the RNA-seq data from the Cancer Genome Atlas, and screened out DEGs and DELs between gastric cancer tissues and normal gastric tissues. By bioinformatics analysis, we identified CTD-2510F5.4 was a malignant phenotype associated lncRNA. The expression levels of CTD-2510F5.4 in tissues were detected by ISH, and the relationships between CTD-2510F5.4 expression and clinicopathological characteristics were analyzed by statistical analysis. RESULTS:By bioinformatics analysis and functional analysis, we identified CTD-2510F5.4 was a malignant phenotype associated lncRNA of gastric cancer that potentially regulated cell cycle and apoptosis. CTD-2510F5.4 expression was significantly higher in gastric cancers, and was correlated with pathological grade, vascular or nerve invasion, AJCC TNM stage and OS. Moreover, gastric cancer patients with high CTD-2510F5.4 expression showed significantly shorter MST. High CTD-2510F5.4 expression was a independent risk factor for gastric cancers at pathological grade < III and without vascular or nerve invasion. CONCLUSIONS:We identified CTD-2510F5.4 was a malignant phenotype associated lncRNA potentially involved in the pathogenesis of gastric cancer. Our data also supported the clinical potential of CTD-2510F5.4 being a diagnostic and prognostic biomarker for gastric cancer.
Project description:Gastric cancer (GC) is the fifth most common malignant tumor in the world. The present study was performed to discover the potential diagnostic and therapeutic long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) of GC. Data used in this study to identify differentially expressed lncRNAs (DElncRNAs) and miRNAs (DEmiRNAs) were obtained from 187 GC tissues and 32 adjacent nontumor tissues. The total clinical data on GC included 187 cases. The above data were from the TCGA database. RStudio/Bioconductor software was used to conduct univariate analysis, the least absolute shrinkage and selection operator (LASSO) Cox, and multivariate Cox proportional risk regression for the DElncRNAs and DEmiRNAs. Clinical information was analyzed through univariate and multivariate Cox analysis. Results: five lncRNAs (AC007785.3, AC079385.3, LINC00392, LINC01729, and U95743.1) and two miRNAs (hsa-miR-3174, hsa-miR-605) were proven to be independent prognostic indicators of GC. Results of the Kaplan-Meier survival analysis showed that AC007785.3, AC079385.3, LINC01729, miR-3174, and miR-605 were significantly correlated with OS of GC. The target genes of AC079385.3, miR-3174, and miR-605 were obtained and clustered mainly on MAPK and cGMP-PKG signaling pathways. The clinical data showed that age and clinicopathologic stage were correlated with the prognosis of GC. Furthermore, AC007785.3 was associated with metastasis of GC, and miR-3174 was associated with the primary tumor condition of GC. We identified three lncRNAs (AC007785.3, AC079385.3, LINC01729), two miRNAs (miR-3174, miR-605), and clinical factors related to the pathogenesis and prognosis of GC. Our predicted results provide a possible entry point for the study of prognostic markers for GC.