Ontology highlight
ABSTRACT: Background
We compared T1- and T2-weighted signal intensities of liver-specific (gadoxetate, gadobenate) and non-specific (gadoterate) gadolinium contrast agents (CAs) in a bile phantom.Methods
In a phantom study, gadoxetate, gadobenate, and gadoterate were diluted in saline, blood, and bile at different concentrations (0, 0.25, 0.5. 1, 2.5, 5, 10, and 25 mM) and imaged in a 3-T magnetic resonance imaging (MRI) system using T1- and T2-weighted sequences. The maximum signal intensities of CAs were compared for each sequence separately and across all T1-weighted sequences using one-way ANOVA.Results
Using T1-weighted sequences, CA concentration-dependent signal intensity increase was followed by decrease due to T2* effects. Comparing CAs for each sequence in bile yielded higher maximum signal intensities with gadobenate than gadoxetate and gadoterate using T1-weighted spin-echo (p < 0.010), multiecho gradient- and spin-echo (p < 0.001), and T1-weighted high-resolution isotropic volume excitation (eTHRIVE) sequences (p < 0.010). Comparing across all T1-weighted sequences in the bile phantom, gadobenate imaged using T1-weighted turbo field-echo (TFE) sequence showed the highest signal intensity, significantly higher than that using other CAs agents or sequences (p < 0.004) except for gadobenate and gadoxetate evaluated with three-dimensional multiecho fast field-echo (3D-mFFE) and gadoxetate with T1-weighted TFE sequence (p > 0.141). Signal reduction with CA concentration-dependent decrease was observed on T2-weighted images.Conclusion
In this bile phantom study of gadolinium-based CA, gadobenate and gadoxetate showed high signal intensity with T1-weighted TFE and 3D-mFFE sequences, which supports their potential utility for contrast-enhanced hepatobiliary MRI.Key points
• Contrast-enhanced magnetic resonance (MR) cholangiography depends on contrast agent type, kinetics, and concentration in bile, • We compared signal intensities of three contrast agents in a bile phantom study. • Gadobenate, gadoxetate, and gadoterate demonstrated different signal intensities at identical concentrations. • Gadoxetate and gadobenate showed high signal intensities on T1-weighted MR sequences.
SUBMITTER: Froehlich JM
PROVIDER: S-EPMC10126166 | biostudies-literature | 2023 Apr
REPOSITORIES: biostudies-literature

European radiology experimental 20230424 1
<h4>Background</h4>We compared T1- and T2-weighted signal intensities of liver-specific (gadoxetate, gadobenate) and non-specific (gadoterate) gadolinium contrast agents (CAs) in a bile phantom.<h4>Methods</h4>In a phantom study, gadoxetate, gadobenate, and gadoterate were diluted in saline, blood, and bile at different concentrations (0, 0.25, 0.5. 1, 2.5, 5, 10, and 25 mM) and imaged in a 3-T magnetic resonance imaging (MRI) system using T1- and T2-weighted sequences. The maximum signal intens ...[more]