Unknown

Dataset Information

0

Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles.


ABSTRACT: One of the main drivers within the field of bottom-up synthetic biology is to develop artificial chemical machines, perhaps even living systems, that have programmable functionality. Numerous toolkits exist to generate giant unilamellar vesicle-based artificial cells. However, methods able to quantitatively measure their molecular constituents upon formation is an underdeveloped area. We report an artificial cell quality control (AC/QC) protocol using a microfluidic-based single-molecule approach, enabling the absolute quantification of encapsulated biomolecules. While the measured average encapsulation efficiency was 11.4 ± 6.8%, the AC/QC method allowed us to determine encapsulation efficiencies per vesicle, which varied significantly from 2.4 to 41%. We show that it is possible to achieve a desired concentration of biomolecule within each vesicle by commensurate compensation of its concentration in the seed emulsion. However, the variability in encapsulation efficiency suggests caution is necessary when using such vesicles as simplified biological models or standards.

SUBMITTER: Supramaniam P 

PROVIDER: S-EPMC10127275 | biostudies-literature | 2023 Apr

REPOSITORIES: biostudies-literature

altmetric image

Publications

Measuring Encapsulation Efficiency in Cell-Mimicking Giant Unilamellar Vesicles.

Supramaniam Pashiini P   Wang Zibo Z   Chatzimichail Stelios S   Parperis Christopher C   Kumar Aditi A   Ho Vanessa V   Ces Oscar O   Salehi-Reyhani Ali A  

ACS synthetic biology 20230328 4


One of the main drivers within the field of bottom-up synthetic biology is to develop artificial chemical machines, perhaps even living systems, that have programmable functionality. Numerous toolkits exist to generate giant unilamellar vesicle-based artificial cells. However, methods able to quantitatively measure their molecular constituents upon formation is an underdeveloped area. We report an artificial cell quality control (AC/QC) protocol using a microfluidic-based single-molecule approac  ...[more]

Similar Datasets

| S-EPMC8889913 | biostudies-literature
| S-EPMC9710609 | biostudies-literature
| S-EPMC9508480 | biostudies-literature
| S-EPMC3699747 | biostudies-literature
| S-EPMC8172239 | biostudies-literature
| S-EPMC5564371 | biostudies-literature
| S-EPMC11579933 | biostudies-literature
| S-EPMC7075891 | biostudies-literature
| S-EPMC5764977 | biostudies-literature
| S-EPMC6003926 | biostudies-literature