Project description:Omicron (B.1.1.529), the fifth variant of concern (VOC) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was firstly identified in November 2021 in South Africa. Omicron contains far more genome mutations than any other VOCs ever found, raising significant concerns about its increased transmissibility and immune evasion. Here, we report the importation of the Omicron variant into Beijing, China, in December 2021. Full-length genome sequences of five imported strains were obtained, with their genetic features characterized. Each strain contained 57 to 61 nucleotide substitutions, 39 deletions, and 9 insertions in the genome. Thirty to thirty-two amino acid changes were found in the spike proteins of the five strains. The phylogenetic tree constructed by the maximum likelihood method showed that all five imported genomes belonged to Omicron (BA.1) (alias of B.1.1.529.1), which is leading to the current surge of coronavirus disease 2019 (COVID-19) cases worldwide. The globally increased COVID-19 cases driven by the Omicron variant pose a significant challenge to disease prevention and control in China. Continuous viral genetic surveillance and increased testing among international travellers are required to contain this highly contagious variant.
Project description:In late 2021, a new variant of SARS-CoV-2 called Omicron emerged, replacing Delta worldwide. Although it has been associated with a lower risk of hospitalization and severe forms of COVID-19, there is little evidence of its relationship with specific symptoms and viral load. The aim of this study was to verify the relationship between Delta and Omicron variants of concern, viral load, and the occurrence of symptoms in individuals with COVID-19. Nasopharyngeal swab samples were collected and sequenced from patients with COVID-19 from the Northeast Region of Brazil between August 2021 and March 2022. The results showed a gradual replacement of the Delta variant by the Omicron variant during the study period. A total of 316 samples (157 Delta and 159 Omicron) were included. There was a higher prevalence of symptoms in Delta-infected individuals, such as coryza, olfactory and taste disturbances, headache, and myalgia. There was no association between viral load and the variants analyzed. The results reported here contribute to the understanding of the symptoms associated with the Delta and Omicron variants in individuals affected by COVID-19.
Project description:From 2020 to December 2022, China implemented strict measures to contain the spread of severe acute respiratory syndrome coronavirus 2. However, despite these efforts, sustained outbreaks of the Omicron variants occurred in 2022. We extracted COVID-19 case numbers from May 2021 to October 2022 to identify outbreaks of the Delta and Omicron variants in all provinces of mainland China. We found that omicron outbreaks were more frequent (4.3 vs. 1.6 outbreaks per month) and longer-lasting (mean duration: 13 vs. 4 weeks per outbreak) than Delta outbreaks, resulting in a total of 865,100 cases, of which 85% were asymptomatic. Despite the average Government Response Index being 12% higher (95% confidence interval (CI): 9%, 15%) in Omicron outbreaks, the average daily effective reproduction number (Rt) was 0.45 higher (95% CI: 0.38, 0.52, p < 0.001) than in Delta outbreaks. Omicron outbreaks were suppressed in 32 days on average (95% CI: 26, 39), which was substantially longer than Delta outbreaks (14 days; 95% CI: 11, 19; p = 0.004). We concluded that control measures effective against Delta could not contain Omicron outbreaks in China. This highlights the need for continuous evaluation of new variants' epidemiology to inform COVID-19 response decisions.
Project description:BackgroundIn vitro studies suggesting that REGEN-COV (casirivimab plus imdevimab monoclonal antibodies) had poor efficacy against Omicron-variant SARS-CoV-2 infection led to amendment of REGEN-COV's Emergency Use Authorization to recommend use only in regions without high Omicron prevalence. REGEN-COV's relative clinical effectiveness for Omicron is unknown.Methods and findingsWe conducted a retrospective cohort study of non-hospitalized adults who tested positive for SARS-CoV-2 by polymerase chain reaction at the University of Miami Health System from July 19 -November 21, 2021 (Delta period) and December 6, 2021 -January 7, 2022 (Omicron period). Subjects were stratified be REGEN-COV receipt within 72h of test positivity and by time period of infection. We constructed multivariable logistic regression models to assess the differential association of REGEN-COV receipt with hospitalization within 30 days (primary outcome) and ED presentation; all models included three exposure terms (REGEN-COV receipt, Omicron vs Delta period, interaction of REGEN-COV with time period) and potential confounders (vaccination status, vaccine boosting, cancer diagnosis). Our cohort consisted of 2,083 adults in the Delta period (213 [10.2%] received REGEN-COV) and 4,201 in the Omicron period (156 [3.7%] received REGEN-COV). Hospitalization was less common during the Omicron period than during Delta (0.9% vs 1.7%, p = 0.78) and more common for patients receiving REGEN-COV than not (5.7% vs 0.9%, p<0.001). After adjustment, we found no differential association of REGEN-COV use during Omicron vs Delta with hospitalization within 30d (adjusted odds ratio [95% confidence interval] for the interaction term: 2.31 [0.76-6.92], p = 0.13). Similarly, we found no differential association for hospitalization within 15d (2.45 [0.63-9.59], p = 0.20) or emergency department presentation within 30d (1.43 [0.57-3.51], p = 0.40) or within 15d (1.79 [0.65-4.82], p = 0.30).ConclusionsWithin the limitations of this study's power to detect a difference, we identified no differential effectiveness of REGEN-COV in the context of Omicron vs Delta SARS-CoV-2 infection.
Project description:The variants of concern (VOCs) of SARS-CoV-2 have exhibited different phenotypic characteristics in clinical settings which are yet to be fully explored. This study aimed to characterize the viral replication features of major VOCs of SARS-CoV-2 and their association with pathogenicity. The Alpha, Delta, and Omicron variants of SARS-CoV-2 isolated from the COVID-19 patients in Japan were propagated in VeroE6/TMPRSS2 cells. The viral replication and pathological features were evaluated by laser and electron microscopy at different time points. The results revealed that the Delta variant dominantly infected the VeroE6/TMPRSS2 cells and formed increased syncytia compared to the Alpha and Omicron variants. Relatively large numbers of virions and increased immunoreactivities of the SARS-CoV-2 N-protein were detected in the endoplasmic reticulum and intracellular vesicles of Delta-infected cells. Interestingly, the N-protein and virions were detected in the nucleus of Delta-infected cells, while such properties were not observed in the case of Alpha and Omicron variants. In addition, early nuclear membrane damage followed by severe cellular damage was prominent in Delta-infected cells. A unique mutation (G215C) in the N-protein of the Delta variant is thought to be associated with severe cell damage. In conclusion, this study highlights the distinct replicative and pathogenic characteristics of the Delta variant of SARS-CoV-2 compared to the Alpha and Omicron variants, shedding light on the potential mechanisms underlying its increased pathogenicity.
Project description:The Omicron variant of SARS-CoV-2 achieved worldwide dominance in late 2021. Early work suggests that infections caused by the Omicron variant may be less severe than those caused by the Delta variant. We sought to compare clinical outcomes of infections caused by these two strains, confirmed by whole genome sequencing, over a short period of time, from respiratory samples collected from SARS-CoV-2 positive patients at a large medical center. We found that infections caused by the Omicron variant caused significantly less morbidity, including admission to the hospital and requirement for oxygen supplementation, and significantly less mortality than those caused by the Delta variant.
Project description:At present, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spread worldwide, which has emerged multiple variants and brought a threat to global public health. To analyze the genomic characteristics and variations of SARS-CoV-2 imported into Beijing, we collected the respiratory tract specimens of 112 cases of coronavirus disease 2019 (COVID-19) from January to September 2021 in Beijing, China, including 40 local cases and 72 imported cases. The whole-genome sequences of the viruses were sequenced by the next-generation sequencing method. Variant markers and phylogenic features of SARS-CoV-2 were analyzed. Our results showed that in all 112 sequences, the mutations were concentrated in spike protein. D614G was found in all sequences, and mutations including L452R, T478K, P681R/H, and D950N in some cases. Furthermore, 112 sequences belonged to 23 lineages by phylogenetic analysis. B.1.1.7 (Alpha) and B.1.617.2 (Delta) lineages were dominant. Our study drew a variation image of SARS-CoV-2 and could help evaluate the potential risk of COVID-19 for pandemic preparedness and response.
Project description:Emerging SARS-CoV-2 variants with higher transmissibility and immune escape remain a persistent threat across the globe. This is evident from the recent outbreaks of the Delta (B.1.617.2) and Omicron variants. These variants have originated from different continents and spread across the globe. In this study, we explored the genomic and structural basis of these variants for their lineage defining mutations of the spike protein through computational analysis, protein modeling, and molecular dynamic (MD) simulations. We further experimentally validated the importance of these deletion mutants for their immune escape using a pseudovirus-based neutralization assay, and an antibody (4A8) that binds directly to the spike protein's NTD. Delta variant with the deletion and mutations in the NTD revealed a better rigidity and reduced flexibility as compared to the wild-type spike protein (Wuhan isolate). Furthermore, computational studies of 4A8 monoclonal antibody (mAb) revealed a reduced binding of Delta variant compared to the wild-type strain. Similarly, the MD simulation data and virus neutralization assays revealed that the Omicron also exhibits immune escape, as antigenic beta-sheets appear to be disrupted. The results of the present study demonstrate the higher possibility of immune escape and thereby achieved better fitness advantages by the Delta and Omicron variants, which warrants further demonstrations through experimental evidences. Our study, based on in-silico computational modelling, simulations, and pseudovirus-based neutralization assay, highlighted and identified the probable mechanism through which the Delta and Omicron variants are more pathogenically evolved with higher transmissibility as compared to the wild-type strain.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron (B.1.1.529) variant is highly transmissible with potential immune escape. We conducted a test-negative case-control study to evaluate mRNA-1273 vaccine effectiveness (VE) against infection and hospitalization with Omicron or Delta. The large, diverse study population included 26,683 SARS-CoV-2 test-positive cases with variants determined by S gene target failure status (16% Delta and 84% Omicron). The two-dose VE against Omicron infection at 14-90 days was 44.0% (95% confidence interval, 35.1-51.6%) but declined quickly. The three-dose VE was 93.7% (92.2-94.9%) and 86.0% (78.1-91.1%) against Delta infection and 71.6% (69.7-73.4%) and 47.4% (40.5-53.5%) against Omicron infection at 14-60 days and >60 days, respectively. The three-dose VE was 29.4% (0.3-50.0%) against Omicron infection in immunocompromised individuals. The three-dose VE against hospitalization with Delta or Omicron was >99% across the entire study population. Our findings demonstrate high, durable three-dose VE against Delta infection but lower effectiveness against Omicron infection, particularly among immunocompromised people. However, three-dose VE of mRNA-1273 was high against hospitalization with Delta and Omicron variants.
Project description:ObjectiveThe Omicron variant of SARS-COV-2 is replacing previously circulating variants around the world in 2022. Sporadic outbreaks of the Omicron variant into China have posed a concern how to properly response to battle against evolving coronavirus disease 2019 (COVID-19).MethodsBased on the epidemic data from website announced by Beijing Center for Disease Control and Prevention for the recent outbreak in Beijing from April 22nd to June 8th in 2022, we developed a modified SEPIR model to mathematically simulate the customized dynamic COVID-zero strategy and project transmissions of the Omicron epidemic. To demonstrate the effectiveness of dynamic-changing policies deployment during this outbreak control, we modified the transmission rate into four parts according to policy-changing dates as April 22nd to May 2nd, May 3rd to 11st, May 12th to 21st, May 22nd to June 8th, and we adopted Markov chain Monte Carlo (MCMC) to estimate different transmission rate. Then we altered the timing and scaling of these measures used to understand the effectiveness of these policies on the Omicron variant.ResultsThe estimated effective reproduction number of four parts were 1.75 (95% CI 1.66-1.85), 0.89 (95% CI 0.79-0.99), 1.15 (95% CI 1.05-1.26) and 0.53 (95% CI 0.48 -0.60), respectively. In the experiment, we found that till June 8th the cumulative cases would rise to 132,609 (95% CI 59,667-250,639), 73.39 times of observed cumulative cases number 1,807 if no policy were implemented on May 3rd, and would be 3,235 (95% CI 1,909 - 4,954), increased by 79.03% if no policy were implemented on May 22nd. A 3-day delay of the implementation of policies would led to increase of cumulative cases by 58.28% and a 7-day delay would led to increase of cumulative cases by 187.00%. On the other hand, taking control measures 3 or 7 days in advance would result in merely 38.63% or 68.62% reduction of real cumulative cases. And if lockdown implemented 3 days before May 3rd, the cumulative cases would be 289 (95% CI 211-378), reduced by 84%, and the cumulative cases would be 853 (95% CI 578-1,183), reduced by 52.79% if lockdown implemented 3 days after May 3rd.ConclusionThe dynamic COVID-zero strategy might be able to effectively minimize the scale of the transmission, shorten the epidemic period and reduce the total number of infections.