Unknown

Dataset Information

0

Prebiotic Supplementation during Lactation Affects Microbial Colonization in Postnatal-Growth-Restricted Mice.


ABSTRACT:

Background

An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth-restricted mice (PNGR).

Methods

Large litters (15 pups/mother) were generated from FVB/NRj mice to induce PNGR at postnatal day 4 (PN4) and compared to control litters (CTRL, 8 pups/mother). PF (a resistant dextrin) or water was orally administered once daily to the pups from PN8 to PN20 (3.5 g/kg/day). Intestinal morphology was evaluated at weaning (PN21) using the ileum and colon. Microbial colonization and short-chain fatty acid (SCFA) production were investigated using fecal and cecal contents.

Results

At weaning, the PNGR mice showed decreased body weight and ileal crypt depth compared to the CTRL. The PNGR microbiota was associated with decreased proportions of the Lachnospiraceae and Oscillospiraceae families and the presence of the Akkermansia family and Enterococcus genus compared to the CTRL pups. The propionate concentrations were also increased with PNGR. While PF supplementation did not impact intestinal morphology in the PNGR pups, the proportions of the Bacteroides and Parabacteroides genera were enriched, but the proportion of the Proteobacteria phylum was reduced. In the CTRL pups, the Akkermansia genus (Verrucomicrobiota phylum) was present in the PF-supplemented CTRL pups compared to the water-supplemented ones.

Conclusions

PNGR alters intestinal crypt maturation in the ileum at weaning and gut microbiota colonization. Our data support the notion that PF supplementation might improve gut microbiota establishment during the early postnatal period.

SUBMITTER: Marousez L 

PROVIDER: S-EPMC10300902 | biostudies-literature | 2023 Jun

REPOSITORIES: biostudies-literature

altmetric image

Publications

Prebiotic Supplementation during Lactation Affects Microbial Colonization in Postnatal-Growth-Restricted Mice.

Marousez Lucie L   Tran Léa Chantal LC   Micours Edwina E   Antoine Matthieu M   Gottrand Frédéric F   Lesage Jean J   Ley Delphine D  

Nutrients 20230616 12


<h4>Background</h4>An inadequate perinatal nutritional environment can alter the maturation of the intestinal barrier and promote long-term pathologies such as metabolic syndrome or chronic intestinal diseases. The intestinal microbiota seems to play a determining role in the development of the intestinal barrier. In the present study, we investigated the impact of consuming an early postnatal prebiotic fiber (PF) on growth, intestinal morphology and the microbiota at weaning in postnatal-growth  ...[more]

Similar Datasets

| S-EPMC8476651 | biostudies-literature
| S-EPMC8779157 | biostudies-literature
| S-EPMC10899111 | biostudies-literature
| S-EPMC6226774 | biostudies-literature
| S-EPMC6179277 | biostudies-literature
| S-EPMC4195493 | biostudies-literature
| S-EPMC9849907 | biostudies-literature
| S-EPMC6004541 | biostudies-literature
| S-EPMC9558557 | biostudies-literature
| S-EPMC6417215 | biostudies-literature