Unknown

Dataset Information

0

A Low-Cost Radar-Based IoT Sensor for Noncontact Measurements of Water Surface Velocity and Depth.


ABSTRACT: We designed an out-of-water radar water velocity and depth sensor, which is unique due to its low cost and low power consumption. The sensor is a first at a cost of less than USD 50, which is well suited to previously cost-prohibited high-resolution monitoring schemes. This use case is further supported by its out-of-water operation, which provides low-effort installations and longer maintenance-free intervals when compared with in-water sensors. The inclusion of both velocity and depth measurement capabilities allows the sensor to also be used as an all-in-one solution for flowrate measurement. We discuss the design of the sensor, which has been made freely available under open-hardware and open-source licenses. The design uses commonly available electronic components, and a 3D-printed casing makes the design easy to replicate and modify. Not before seen on a hydrology sensor, we include a 3D-printed radar lens in the casing, which boosts radar sensitivity by 21 dB. The velocity and depth-sensing performance were characterised in laboratory and in-field tests. The depth is accurate to within ±6% and ±7 mm and the uncertainty in the velocity measurements ranges from less than 30% to 36% in both laboratory and field conditions. Our sensor is demonstrated to be a feasible low-cost design which nears the uncertainty of current, yet more expensive, velocity sensors, especially when field performance is considered.

SUBMITTER: Catsamas S 

PROVIDER: S-EPMC10385264 | biostudies-literature | 2023 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

A Low-Cost Radar-Based IoT Sensor for Noncontact Measurements of Water Surface Velocity and Depth.

Catsamas Stephen S   Shi Baiqian B   Wang Miao M   Xiao Jieren J   Kolotelo Peter P   McCarthy David D  

Sensors (Basel, Switzerland) 20230711 14


We designed an out-of-water radar water velocity and depth sensor, which is unique due to its low cost and low power consumption. The sensor is a first at a cost of less than USD 50, which is well suited to previously cost-prohibited high-resolution monitoring schemes. This use case is further supported by its out-of-water operation, which provides low-effort installations and longer maintenance-free intervals when compared with in-water sensors. The inclusion of both velocity and depth measurem  ...[more]

Similar Datasets

| S-EPMC9572237 | biostudies-literature
| S-EPMC7294427 | biostudies-literature
| S-EPMC8123848 | biostudies-literature
| S-EPMC8774002 | biostudies-literature
| S-EPMC6679561 | biostudies-literature
| S-EPMC10708678 | biostudies-literature
| S-EPMC8060689 | biostudies-literature
| S-EPMC9392064 | biostudies-literature
| S-EPMC5526660 | biostudies-literature
| S-EPMC8858598 | biostudies-literature