Ontology highlight
ABSTRACT: Significance statement
Neuroscience studies often involve simultaneous recordings in a large number of sensors in which a smaller number of dynamic components generate the complex spatio-temporal patterns observed in the data. Current blind source separation techniques produce sub-optimal results and are difficult to interpret because these methods lack an appropriate generative model that can guide both statistical inference and interpretation. Here we describe a novel component analysis method employing a dynamic generative model that can decompose high-dimensional multivariate data into a smaller set of oscillatory components are learned in a data-driven way, with parameters that are immediately interpretable. We show how this method can be applied to neurophysiological recordings with millisecond precision that exhibit oscillatory activity such as electroencephalography and magnetoencephalography.
SUBMITTER: Das P
PROVIDER: S-EPMC10402019 | biostudies-literature | 2024 Feb
REPOSITORIES: biostudies-literature
bioRxiv : the preprint server for biology 20240610
Modern neurophysiological recordings are performed using multichannel sensor arrays that are able to record activity in an increasingly high number of channels numbering in the 100's to 1000's. Often, underlying lower-dimensional patterns of activity are responsible for the observed dynamics, but these representations are difficult to reliably identify using existing methods that attempt to summarize multivariate relationships in a post-hoc manner from univariate analyses, or using current blind ...[more]