Project description:Vanadium redox flow batteries (VRFBs) are considered as promising electrochemical energy storage systems due to their efficiency, flexibility and scalability to meet our needs in renewable energy applications. Unfortunately, the low electrochemical performance of the available carbon-based electrodes hinders their commercial viability. Herein, novel free-standing electrospun nanofibrous carbon-loaded composites with textile-like characteristics have been constructed and employed as efficient electrodes for VRFBs. In this work, polyacrylonitrile-based electrospun nanofibers loaded with different types of carbon black (CB) were electrospun providing a robust free-standing network. Incorporation of CBs (14% and 50% weight ratio) resulted in fibers with rough surface and increased mean diameter. It provided higher BET surface area of 83.8 m2 g-1 for as-spun and 356.7 m2 g-1 for carbonized fibers compared to the commercial carbon felt (0.6 m2 g-1). These loaded CB-fibers also had better thermal stability and showed higher electrochemical activity for VRFBs than a commercial felt electrode.
Project description:The ionic exchange membranes represent a core component of redox flow batteries. Their features strongly affect the performance, durability, cost, and efficiency of these energy systems. Herein, the operating conditions of a lab-scale single-cell vanadium flow battery (VRFB) were optimized in terms of membrane physicochemical features and electrolyte composition, as a way to translate such conditions into a large-scale five-cell VRFB stack system. The effects of the sulfonation degree (SD) and the presence of a filler on the performances of sulfonated poly(ether ether ketone) (SPEEK) ion-selective membranes were investigated, using the commercial perfluorosulfonic-acid Nafion 115 membrane as a reference. Furthermore, the effect of a chloride-based electrolyte was evaluated by comparing it to the commonly used standard sulfuric acid electrolyte. Among the investigated membranes, the readily available SPEEK50-0 (SD = 50%; filler = 0%) resulted in it being permeable and selective to vanadium. Improved coulombic efficiency (93.4%) compared to that of Nafion 115 (88.9%) was achieved when SPEEK50-0, in combination with an optimized chloride-based electrolyte, was employed in a single-cell VRFB at a current density of 20 mA·cm-2. The optimized conditions were successfully applied for the construction of a five-cell VRFB stack system, exhibiting a satisfactory coulombic efficiency of 94.5%.
Project description:Although the Nafion membrane has a high energy efficiency, long service life, and operational flexibility when applied for vanadium redox flow battery (VRFB) applications, its applications are limited due to its high vanadium permeability. In this study, anion exchange membranes (AEMs) based on poly(phenylene oxide) (PPO) with imidazolium and bis-imidazolium cations were prepared and used in VRFBs. PPO with long-pendant alkyl-side-chain bis-imidazolium cations (BImPPO) exhibits higher conductivity than the imidazolium-functionalized PPO with short chains (ImPPO). ImPPO and BImPPO have a lower vanadium permeability (3.2 × 10-9 and 2.9 × 10-9 cm2 s-1) than Nafion 212 (8.8 × 10-9 cm2 s-1) because the imidazolium cations are susceptible to the Donnan effect. Furthermore, under the current density of 140 mA cm-2, the VRFBs assembled with ImPPO- and BImPPO-based AEMs exhibited a Coulombic efficiency of 98.5% and 99.8%, respectively, both of which were higher than that of the Nafion212 membrane (95.8%). Bis-imidazolium cations with long-pendant alkyl side chains contribute to hydrophilic/hydrophobic phase separation in the membranes, thus improving the conductivity of membranes and the performance of VRFBs. The VRFB assembled with BImPPO exhibited a higher voltage efficiency (83.5%) at 140 mA cm-2 than that of ImPPO (77.2%). These results of the present study suggest that the BImPPO membranes are suitable for VRFB applications.
Project description:We studied the half-cell performance of a slurry-based vanadium redox flow battery via the polarization and electrochemical impedance spectroscopy methods. First, the conductive static mixers are examined and lower ohmic and diffusion resistances are shown. Further analyses of the slurry electrodes for the catholyte (VO2+-VO2 +) and anolyte (V3+-V2+) are presented for the graphite powder slurry containing up to 15.0 wt.% particle content. Overall, the anolyte persists as the more resistive half-cell, while ohmic and diffusion-related limitations are the dominating resistances for both electrolytes. The battery is further improved by the addition of Ketjen black nanoparticles, which results in lower cell resistances. The best results are achieved when 0.5 wt.% Ketjen black nanoparticles are dispersed with graphite powder since the addition of nanoparticles reduces ohmic, charge transfer and mass diffusion resistances by improving particle-particle dynamics. The results prove the importance of understanding resistances in a slurry electrode system.
Project description:The quest for a cost-effective, chemically-inert, robust and proton conducting membrane for flow batteries is at its paramount. Perfluorinated membranes suffer severe electrolyte diffusion, whereas conductivity and dimensional stability in engineered thermoplastics depend on the degree of functionalization. Herein, we report surface-modified thermally crosslinked polyvinyl alcohol-silica (PVA-SiO2) membranes for the vanadium redox flow battery (VRFB). Hygroscopic, proton-storing metal oxides such as SiO2, ZrO2 and SnO2 were coated on the membranes via the acid-catalyzed sol-gel strategy. The membranes of PVA-SiO2-Si, PVA-SiO2-Zr and PVA-SiO2-Sn demonstrated excellent oxidative stability in 2 M H2SO4 containing 1.5 M VO2+ ions. The metal oxide layer had good influence on conductivity and zeta potential values. The observed trend for conductivity and zeta potential values was PVA-SiO2-Sn > PVA-SiO2-Si > PVA-SiO2-Zr. In VRFB, the membranes showcased higher Coulombic efficiency than Nafion-117 and stable energy efficiencies over 200 cycles at the 100 mA cm-2 current density. The order of average capacity decay per cycle was PVA-SiO2-Zr < PVA-SiO2-Sn < PVA-SiO2-Si < Nafion-117. PVA-SiO2-Sn had the highest power density of 260 mW cm-2, while the self-discharge for PVA-SiO2-Zr was ~3 times higher than Nafion-117. VRFB performance reflects the potential of the facile surface modification technique to design advanced membranes for energy device applications.
Project description:This paper contains a vanadium redox flow battery stack with an electrode surface area 40 cm2 test data. The aim of the study was to characterize the performance of the stack of the original design. The dataset include three series of galvanostatic charge-discharge cycling in the potential region 8-16 V with current densities 75, 150 and 200 mA/cm2 for 100 cycles. Coulomb, voltaic, energy efficiencies and capacity utilization coefficient are also provided for all three series.
Project description:Carbon electrodes are one of the key components of vanadium redox flow batteries (VRFBs), and their wetting behavior, electrochemical performance, and tendency to side reactions are crucial for cell efficiency. Herein, we demonstrate three different types of electrode modifications: poly(o-toluidine) (POT), Vulcan XC 72R, and an iron-doped carbon-nitrogen base material (Fe-N-C + carbon nanotube (CNT)). By combining synchrotron X-ray imaging with traditional characterization approaches, we give thorough insights into changes caused by each modification in terms of the electrochemical performance in both half-cell reactions, wettability and permeability, and tendency toward the hydrogen evolution side reaction. The limiting performance of POT and Vulcan XC 72R could mainly be ascribed to hindered electrolyte transport through the electrode. Fe-N-C + CNT displayed promising potential in the positive half-cell with improved electrochemical performance and wetting behavior but catalyzed the hydrogen evolution side reaction in the negative half-cell.
Project description:It is important to study the effect of Fe(III) on the positive electrolyte, in order to provide some practical guidance for the preparation and use of vanadium electrolyte. The effect of Fe(III) on the thermal stability and electrochemical behaviour of the positive electrolyte for the vanadium redox flow battery (VRFB) was investigated. When the Fe(III) concentration was above 0.0196 mol l-1, the thermal stability of V(V) electrolyte was impaired, the diffusion coefficient of V(IV) species decreased from (2.06-3.33) × 10-6 cm2 s-1 to (1.78-2.88) × 10-6 cm2 s-1, and the positive electrolyte exhibited a higher electrolyte resistance and a charge transfer resistance. Furthermore, Fe(III) could result in the side reaction and capacity fading, which would have a detrimental effect on battery application. With the increase of Fe(III), the collision probability of vanadium ions with Fe(III) and the competition with the redox reaction was aggravated, which would interfere with the electrode reaction, the diffusion of vanadium ions and the performance of VRFB. Therefore, this study provides some practical guidance that it is best to bring the impurity of Fe(III) below 0.0196 mol l-1 during the preparation and use of vanadium electrolyte.
Project description:Vanadium redox flow batteries (VRFBs) have emerged as a promising energy storage solution for stabilizing power grids integrated with renewable energy sources. In this study, we synthesized and evaluated a series of zeolitic imidazolate framework-67 (ZIF-67) derivatives as electrode materials for VRFBs, aiming to enhance electrochemical performance. Four materials-Co/NC-700, Co/NC-800, Co3O4-350, and Co3O4-450-were prepared through thermal decomposition under different conditions and coated onto graphite felt (GF) electrodes. X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analyses confirmed the structural integrity and distribution of the active materials. Electrochemical evaluations revealed that electrodes with ZIF-67-derived coatings exhibited significantly lower charge transfer resistance (Rct) and higher energy efficiency (EE) compared to uncoated GF electrodes. Co/NC-800//GF delivered the highest energy efficiency and discharge capacity among the tested configurations, maintaining stable performance over 100 charge-discharge cycles. These results indicate that Co/NC-800 holds great potential for use in VRFBs due to its superior electrochemical activity, stability, and scalability.
Project description:In order to increase the chemical stability of polybenzimidazole (PBI) membrane against the highly oxidizing environment of a vanadium redox flow battery (VRFB), PBI/Nafion hybrid membrane was developed by spray coating a Nafion ionomer onto one surface of the PBI membrane. The acid-base interaction between the sulfonic acid of the Nafion and the benzimidazole of the PBI created a stable interfacial adhesion between the Nafion layer and the PBI layer. The hybrid membrane showed an area resistance of 0.269 Ω cm2 and a very low vanadium permeability of 1.95 × 10-9 cm2 min-1. The Nafion layer protected the PBI from chemical degradation under accelerated oxidizing conditions of 1 M VO2 +/5 M H2SO4, and this was subsequently examined in spectroscopic analysis. In the VRFB single cell performance test, the cell with the hybrid membrane showed better energy efficiency than the Nafion cell with 92.66% at 40 mA cm-2 and 78.1% at 100 mA cm-2 with no delamination observed between the Nafion layer and the PBI layer after the test was completed.