Project description:Human umbilical cord mesenchymal stem cells (hUC-MSCs) are proposed for the treatment of acute lung injury and atopic dermatitis. To advance hUC-MSC entry into clinical trials, the effects of hUC-MSCs on the general toxicity, immune perturbation and toxicokinetic study of hUC-MSCs in cynomolgus monkeys were assessed. hUC-MSCs were administered to cynomolgus monkeys by intravenous infusion of 3.0 × 106 or 3.0 × 107cells/kg or by subcutaneous injection of 3.0 × 107cells/kg twice a week for 3 weeks followed by withdrawal and observation for 6 weeks. Toxicity was assessed by clinical observation, clinical pathology, ophthalmology, immunotoxicology and histopathology. Moreover, toxicokinetic study was performed using a validated qPCR method after the first and last dose. After 3rd or 4th dosing, one or three the monkeys in the intravenous high-dose group exhibited transient coma, which was eliminated by slow-speed infusion after 5th or 6th dosing. In all dose groups, hUC-MSCs significantly increased NEUT levels and decreased LYMPH and CD3+ levels, which are related to the immunosuppressive effect of hUC-MSCs. Subcutaneous nodules and granulomatous foci were found at the site of administration in all monkeys in the subcutaneous injection group. Other than above abnormalities, no obvious systemic toxicity was observed in any group. The hUC-MSCs was detectable in blood only within 1 h after intravenous and subcutaneous administration. The present study declared the preliminary safety of hUC-MSCs, but close monitoring of hUC-MSCs for adverse effects, such as coma induced by intravenous infusion, is warranted in future clinical trials.
Project description:BackgroundTesticular aging is associated with diminished fertility and certain age-related ailments, and effective therapeutic interventions remain elusive. Here, we probed the therapeutic efficacy of exosomes derived from human umbilical cord mesenchymal stem cells (hUMSC-Exos) in counteracting testicular aging.MethodsWe employed a model of 22-month-old mice and administered intratesticular injections of hUMSC-Exos. Comprehensive analyses encompassing immunohistological, transcriptomic, and physiological assessments were conducted to evaluate the effects on testicular aging. Concurrently, we monitored alterations in macrophage polarization and the oxidative stress landscape within the testes. Finally, we performed bioinformatic analysis for miRNAs in hUMSC-Exos.ResultsOur data reveal that hUMSC-Exos administration leads to a marked reduction in aging-associated markers and cellular apoptosis while promoting cellular proliferation in aged testis. Importantly, hUMSC-Exos facilitated the restoration of spermatogenesis and elevated testosterone synthesis in aged mice. Furthermore, hUMSC-Exos could attenuate inflammation by driving the phenotypic shift of macrophages from M1 to M2 and suppress oxidative stress by reduced ROS production. Mechanistically, these efficacies against testicular aging may be mediated by hUMSC-Exos miRNAs.ConclusionsOur findings suggest that hUMSC-Exos therapy presents a viable strategy to ameliorate testicular aging, underscoring its potential therapeutic significance in managing testicular aging.
Project description:Mesenchymal stem cells (MSCs) are able to self-renew and have multi-lineage differentiation potential. However, studies on ovine umbilical cord-derived MSCs (UC-MSCs) are limited. Our study aimed to isolate and characterize ovine UC-MSCs. We successfully isolated ovine UC-MSCs and defined their surface marker profile using immunofluorescence analysis. Ovine UC-MSCs were found to be positive for cell surface markers CD13, CD29, CD44, CD90, and CD106, and negative for cell surface marker CD45. Assessment of the proliferation potential of ovine UC-MSCs showed that from day 3 of cultivation a plateau phase was reached. And compare to passage 10, 15, 20 cells, passage 5 cells proliferating the fastest. Differentiation of ovine UC-MSCs into adipocytes, osteocytes, and chondrocytes was also demonstrated by staining for tissue-specific markers and using quantitative real-time polymerase chain reaction for specific marker gene expression. This study demonstrates the existence of a MSC population within the ovine umbilical cord, which maintained a normal karyotype up to passage 20.
Project description:Mesenchymal stem cells (MSCs) possess self-renewal and multipotential differentiation abilities, and they are thought to be one of the most reliable stem cell sources for a variety of cell therapies. Recently, cell therapy using MSCs has been studied as a novel therapeutic approach for cancers that show refractory progress and poor prognosis. MSCs from different tissues have different properties. However, the effect of different MSC properties on their application in anticancer therapies has not been thoroughly investigated. In this study, to characterize the anticancer therapeutic application of MSCs from different sources, we established two different kinds of human MSCs: umbilical cord blood-derived MSCs (UCB-MSCs) and adipose-tissue-derived MSCs (AT-MSCs). We used these MSCs in a coculture assay with primary glioblastoma multiforme (GBM) cells to analyze how MSCs from different sources can inhibit GBM growth. We found that UCB-MSCs inhibited GBM growth and caused apoptosis, but AT-MSCs promoted GBM growth. Terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick-end labeling assay clearly demonstrated that UCB-MSCs promoted apoptosis of GBM via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). TRAIL was expressed more highly by UCB-MSCs than by AT-MSCs. Higher mRNA expression levels of angiogenic factors (vascular endothelial growth factor, angiopoietin 1, platelet-derived growth factor, and insulin-like growth factor) and stromal-derived factor-1 (SDF-1/CXCL12) were observed in AT-MSCs, and highly vascularized tumors were developed when AT-MSCs and GBM were cotransplanted. Importantly, CXCL12 inhibited TRAIL activation of the apoptotic pathway in GBM, suggesting that AT-MSCs may support GBM development in vivo by at least two distinct mechanisms-promoting angiogenesis and inhibiting apoptosis. The opposite effects of AT-MSCs and UCB-MSCs on GBM clearly demonstrate that differences must be considered when choosing a stem cell source for safety in clinical application.
Project description:BackgroundAcute liver failure (ALF) is a complicated clinical syndrome associated with high mortality, with liver transplantation as the only treatment option. Treatment of mesenchymal stem cells has shown a potential therapeutic option for acute liver failure. However, the lack of random clinical trials and large non-human primate studies makes it necessary to assess the efficacy and safety in the clinic.MethodsWe treated the monkeys with peripheral delivery of human umbilical MSCs (hUC-MSCs) and investigated the role of hUC-MSCs in modulating the progress of acute liver failure.ResultsThe use of early peripheral infusion of human umbilical cord MSC infusion did not improve liver regeneration or modulate adaptive immunity. However, it significantly suppressed the hepatic aggregation and maturation of circulating monocytes and their IL-6 secretion, greatly improving liver histology, systemic homeostasis, and survival.ConclusionsOur study reveals the critical role of monocyte-derived IL-6 in initiating and accelerating acute liver failure and hUC-MSC treatment can disrupt the development of the inflammatory cascade by inhibiting monocyte activation. Early hUC-MSC treatment disrupts the development of the inflammatory cascade, indicating a potential clinical solution for acute liver failure.
Project description:Generation of induced pluripotent stem cells (iPSCs) and their differentiation into mesenchymal stem/stromal cells (iMSCs) have created exciting source of cells for autologous therapy. In this study, we have compared the therapeutic potential of iMSCs generated from urinary epithelial (UE) cells with the available umbilical cord MSCs (UC-MSCs). For this, adult UE cells were treated with the mRNA of pluripotent genes (OCT4, NANOG, SOX2, KLF4, MYC and LIN28) and a cocktail of miRNAs under specific culture conditions for generating iPSCs. Our non-viral and mRNA-based treatment regimen demonstrated a high reprogramming efficiency to about 30% at passage 0. These UE-iPSCs were successfully differentiated further into ectoderm, endoderm and mesoderm lineage of cells. Moreover, these UE-iPSCs were subsequently differentiated into iMSCs and were compared with the UC-MSCs. These iMSCs were capable of differentiating into osteocytes, chondrocytes and adipocytes. Our qRT-PCR and Western blot data showed that the CD73, CD90 and CD105 gene transcripts and proteins were highly expressed in iMSCs and UC-MSCs but not in other cells. The comparative qRT-PCR data showed that the iMSCs maintained their MSC characteristics without any chromosomal abnormalities even at later passages (P15), during which the UC-MSCs started losing their MSC characteristics. Importantly, the wound-healing property demonstrated through migration assay was superior in iMSCs when compared to the UC-MSCs. In this study, we have demonstrated an excellent non-invasive and pain-free method of obtaining iMSCs for regenerative therapy. These homogeneous autologous highly proliferative iMSCs may provide an alternative source of cells to UC-MSCs for treating various diseases.
Project description:Active HUMSC with distinct binding rate to MDA MB-231 breast cancer cells, distinct ability in suppressing tumorigenesis,distinct cell in cell features and distinct features under TEM then inactive HUMSC We used microarrays to detail the difference gene expression between active HUMSC and inactive HUMSC HUMSC with high MDA MB-231 breast cancer cells suppression rate was selective as active HUMSC and HUMSC with low MDA MB-231 breast cancer cells suppression rate was selective as inactive HUMSC
Project description:Corneal injuries are among the leading causes of blindness and vision impairment. Trauma, infectious keratitis, thermal and chemical (acids and alkali burn) injuries may lead to irreversible corneal scarring, neovascularization, conjunctivalization, and limbal stem cell deficiency. Bilateral blindness constitutes 12% of total global blindness and corneal transplantation remains a stand-alone treatment modality for the majority of end-stage corneal diseases. However, global shortage of donor corneas, the potential risk of graft rejection, and severe side effects arising from long-term use of immunosuppressive medications, demands alternative therapeutic approaches. Umbilical cord-derived mesenchymal stem cells can be isolated in large numbers using a relatively less invasive procedure. However, their role in injury induced corneal repair is largely unexplored. Here, we isolated, cultured and characterized mesenchymal stem cells from human umbilical cord, and studied the expression of mesenchymal (CD73, CD90, CD105, and CD34), ocular surface and epithelial (PAX6, WNT7A, and CK-8/18) lineage markers through immunofluorescence. The cultured human limbal and corneal epithelial cells were used as controls. Scratch assay was used to study the corneal epithelial repair potential of umbilical cord-derived mesenchymal stem cells, in vitro. The in vitro cultured umbilical cord-derived mesenchymal stem cells were plastic adherent, showed trilineage differentiation and expressed: mesenchymal markers CD90, CD105, CD73; epithelial marker CK-8/18, and ocular lineage developmental markers PAX6 and WNT-7A. Our findings suggest that umbilical cord-derived mesenchymal stem cells promote repair of the injured corneal epithelium by stimulating the proliferation of corneal epithelial cells, in vitro. They may serve as a potential non-ocular source of stem cells for treating injury induced bilateral corneal diseases.
Project description:BackgroundIdiopathic Pulmonary Fibrosis (IPF) is a type of interstitial lung disease characterized by chronic inflammation due to persistent lung damage. Mesenchymal stem cells (MSCs), including those derived from the umbilical cord (UCMSCs) and placenta (PLMSCs), have been utilized in clinical trials for IPF treatment. However, the varying therapeutic effectiveness between these two MSC types remains unclear.MethodsIn this study, we examined the therapeutic differences between UCMSCs and PLMSCs in treating lung damage using a bleomycin (BLM)-induced pulmonary injury mouse model.ResultsWe showed that UCMSCs had a superior therapeutic impact on lung damage compared to PLMSCs. Upon cytokine stimulation, UCMSCs expressed higher levels of inflammation-related genes and more effectively directed macrophage polarization towards the M2 phenotype than PLMSCs, both in vitro and in vivo. Furthermore, UCMSCs showed a preference for expressing CC motif ligation 2 (CCL2) and C-X-C motif chemokine ligand 1 (CXCL1) compared to PLMSCs. The expression of secreted phosphoprotein 1 (SPP1), triggering receptor expressed on myeloid cells 2 (Trem2), and CCAAT enhancer binding protein beta (Cebpb) in macrophages from mice with the disease treated with UCMSCs was significantly reduced compared to those treated with PLMSCs.ConclusionsTherefore, UCMSCs demonstrated superior anti-fibrotic abilities in treating lung damage, potentially through inducing a more robust M2 polarization of macrophages than PLMSCs.
Project description:Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) are regarded as an alternative source of bone marrow-derived mesenchymal stem cells because collection of cord blood is less invasive than that of bone marrow. hUCB-MSCs have recently been studied for evaluation of their potential as a source of cell therapy. In this review, the general characteristics of hUCB-MSCs and their therapeutic effects on various diseases in vitro and in vivo will be discussed.