Project description:Diffuse reflectance spectroscopy with a fiber optic probe is a powerful tool for quantitative tissue characterization and disease diagnosis. Significant systematic errors can arise in the measured reflectance spectra and thus in the derived tissue physiological and morphological parameters due to real-time instrument fluctuations. We demonstrate a novel fiber optic probe with real-time, self-calibration capability that can be used for UV-visible diffuse reflectance spectroscopy in biological tissue in clinical settings. The probe is tested in a number of synthetic liquid phantoms over a wide range of tissue optical properties for significant variations in source intensity fluctuations caused by instrument warm up and day-to-day drift. While the accuracy for extraction of absorber concentrations is comparable to that achieved with the traditional calibration (with a reflectance standard), the accuracy for extraction of reduced scattering coefficients is significantly improved with the self-calibration probe compared to traditional calibration. This technology could be used to achieve instrument-independent diffuse reflectance spectroscopy in vivo and obviate the need for instrument warm up and post∕premeasurement calibration, thus saving up to an hour of precious clinical time.
Project description:By augmentation of the collection optics utilized in transmission-based femtosecond stimulated Raman spectroscopy (FSRS), two novel diffuse reflectance-based femtosecond stimulated Raman spectroscopy (drFSRS) techniques were developed. These techniques were then used to collect the Raman spectra of opaque systems, those being cyclohexane-intercalated poly(tetrafluoroethylene) microbeads and ethanol in 1% intralipid solutions. The resulting drFSRS data from the cyclohexane:PTFE system show significant distortion of the depolarization ratio of the 803 cm-1 cyclohexane peak, indicating a loss of incident pump:probe polarization in a scattering environment. The drFSRS data from the ethanol in 1% intralipid solution demonstrate less signal strength but equal spectral resolution when compared to transmission-based FSRS of the same sample. The results presented in this Technical Note demonstrate the current capabilities of collecting stimulated Raman spectra of opaque systems using drFSRS.
Project description:SignificanceFiber-optic extended-wavelength diffuse reflectance spectroscopy (EWDRS) using both visible/near-infrared and shortwave-infrared detectors enables improved detection of spectral absorbances arising from lipids, water, and collagen and has demonstrated promise in a variety of applications, including detection of nerves and neurovascular bundles (NVB). Development of future applications of EWDRS for nerve detection could benefit from the use of model-based analyses including Monte Carlo (MC) simulations and evaluation of agreement between model systems and empirical measurements.AimThe aim of this work is to characterize agreement between EWDRS measurements and simulations and inform future applications of model-based studies of nerve-detecting applications.ApproachA model-based platform consisting of an ex vivo microsurgical nerve dissection model, unique two-layer optical phantoms, and MC model simulations of fiber-optic EWDRS spectroscopic measurements were used to characterize EWDRS and compare agreement across models. In addition, MC simulations of an EWDRS measurement scenario are performed to provide a representative example of future analyses.ResultsEWDRS studies performed in the common chicken thigh femoral nerve microsurgical dissection model indicate similar spectral features for classification of NVB versus adjacent tissues as reported in porcine models and human subjects. A comparison of measurements from unique EWDRS issue mimicking optical phantoms and MC simulations indicates high agreement between the two in homogeneous and two-layer optical phantoms, as well as in dissected tissues. Finally, MC simulations of measurement over a simulated NVB indicate the potential of future applications for measurement of nerve plexus.ConclusionsCharacterization of agreement between fiber-optic EWDRS measurements and MC simulations demonstrates strong agreement across a variety of tissues and optical phantoms, offering promise for further use to guide the continued development of EWDRS for translational applications.
Project description:SignificanceTissue oxygenation is a parameter that allows for determining the health status of human beings. In diabetic patients, it is particularly important to evaluate this parameter as an indicator of microcirculatory problems in the extremities.AimWe aim to obtain tissue oxygen saturation from diffuse reflectance measurements.ApproachA computational algorithm to automate the methodology was implemented with the aim of establishing a medical diagnosis technique that is non-invasive and easy to apply and requires a short evaluation time. Tissue oxygen saturation measurements were performed on a group of volunteers to whom a vascular occlusion was applied. It was observed that, by increasing the applied pressure to the arm of each volunteer, the tissue oxygen saturation progressively decreased.ResultsThe results indicate that the developed technique is an effective method for monitoring changes in blood hemodynamics in patients with some type of pathology in which tissue oxygenation is compromised. In addition, the expected behavior of tissue oxygen saturation during a vascular occlusion was obtained.ConclusionsA methodology to obtain tissue oxygen saturation from diffuse reflectance measurements was successfully developed. It meets the necessary characteristics to be considered a technique for obtaining StO2 because it can be applied in vivo and non-invasively and does not require a high computational cost; thus it is fast and capable of providing an objective and quantifiable evaluation.
Project description:Cellulitis is frequently misdiagnosed owing to its clinical mimickers, collectively known as pseudocellulitis. This study investigated diffuse reflectance spectroscopy (DRS) alone and in combination with infrared thermography (IRT) for the differentiation of cellulitis from pseudocellulitis. A prospective cohort study at an urban academic hospital was conducted from March 2017 to March 2018. Patients presenting to the emergency department with presumed cellulitis were screened for eligibility, and 30 adult patients were enrolled. Dermatology consultation conferred a final diagnosis of cellulitis or pseudocellulitis. DRS measurements yielded a spectral ratio between 556 nm (deoxyhemoglobin peak) and 542 nm (oxyhemoglobin peak), and IRT measurements yielded temperature differentials between the affected and unaffected skin. Of the 30 enrolled patients, 30% were diagnosed with pseudocellulitis. DRS revealed higher spectral ratios in patients with cellulitis (P = 0.005). A single parameter model using logistic regression on DRS measurements alone demonstrated a classification accuracy of 77.0%. A dual parameter model using linear discriminant analysis on DRS and IRT measurements combined demonstrated a 95.2% sensitivity, 77.8% specificity, and 90.0% accuracy for cellulitis prediction. DRS and IRT combined diagnoses cellulitis with an accuracy of 90%. DRS and IRT are inexpensive and noninvasive, and their use may reduce cellulitis misdiagnosis.
Project description:In recent years, genetically modified technology has developed rapidly, and the potential impact of genetically modified foods on human health and the ecological environment has received increasing attention. The currently used methods for testing genetically modified foods are cumbersome, time-consuming, and expensive. This paper proposed a more efficient and convenient detection method. Near-infrared diffuse reflectance spectroscopy (NIRDRS) combined with multivariate calibration methods, including principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and support vector machines (SVM), were used for identification of different rice varieties and transgenic (Bt63)/non-transgenic rice. Spectral pretreatment methods, including Norris-Williams smooth (NWS), standard normal variate (SNV), multiplicative scatter correction (MSC), and Savitzky-Golay 1st derivative (SG 1st-Der), were used for spectral noise reduction and effective information enhancement. Accuracy was used to evaluate the qualitative discriminant models. The results showed that the SG 1st-Der pretreatment method, combined with the SVM, provided the optimal model to distinguish different rice varieties. The accuracy of the optimal model was 98.33%. For the discrimination model of transgenic/non-transgenic rice, the SNV-SVM model, MSC-SVM model, and SG 1st-Der-PLS-DA model all achieved good analysis results with the accuracy of 100%. The results showed that portable NIR spectroscopy combined with chemometrics methods could be used to identify rice varieties and transgenic characteristics (Bt63) due to its fast, non-destructive, and accurate advantages.
Project description:Iatrogenic nerve injuries contribute significantly to postoperative morbidity across various surgical disciplines and occur in approximately 500,000 cases annually in the US alone. Currently, there are no clinically adopted means to intraoperatively visualize nerves beyond the surgeon's visual assessment. Here, we report a label-free method for nerve detection using diffuse reflectance spectroscopy (DRS). Starting with an in vivo rat model, fiber- and imaging-based DRS independently identified similar wavelengths that provided optimal contrast for nerve identification with an accuracy of 92%. Optical property measurements of rat and human cadaver tissues verify that the source of contrast between nerve and surrounding tissues is largely due to higher scattering in nerve and differences in oxygenated hemoglobin content. Clinical feasibility was demonstrated in patients undergoing thyroidectomies using both probe-based and imaging-based approaches where the nerve were identified with 91% accuracy. Based on our preliminary results, DRS has the potential to both provide surgeons with a label-free, intraoperative means of nerve visualization and reduce the incidence of iatrogenic nerve injuries along with its detrimental complications.
Project description:SignificanceMany studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC.AimTumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue.ApproachA multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally-via endoscopic guidance-in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb.ConclusionOur study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.
Project description:Accuracy in spinal fusion varies greatly depending on the experience of the physician. Real-time tissue feedback with diffuse reflectance spectroscopy has been shown to provide cortical breach detection using a conventional probe with two parallel fibers. In this study, Monte Carlo simulations and optical phantom experiments were conducted to investigate how angulation of the emitting fiber affects the probed volume to allow for the detection of acute breaches. Difference in intensity magnitude between cancellous and cortical spectra increased with the fiber angle, suggesting that outward angulated fibers are beneficial in acute breach scenarios. Proximity to the cortical bone could be detected best with fibers angulated at θf=45∘ for impending breaches between θp=0∘ and θp=45∘ . An orthopedic surgical device comprising a third fiber perpendicular to the device axis could thus cover the full impending breach range from θp=0∘ to θp=90∘ .
Project description:Cutaneous leishmaniasis (CL) is a neglected tropical disease that requires novel tools for its understanding, diagnosis, and treatment follow-up. In the cases of other cutaneous pathologies, such as cancer or cutaneous ulcers due to diabetes, optical diffuse reflectance-based tools and methods are widely used for the investigation of those illnesses. These types of tools and methods offer the possibility to develop portable diagnosis and treatment follow-up systems. In this article, we propose the use of a three-layer diffuse reflectance model for the study of the formation of cutaneous ulcers caused by CL. The proposed model together with an inverse-modeling procedure were used in the evaluation of diffuse-reflectance spectral signatures acquired from cutaneous ulcers formed in the dorsal area of 21 golden hamsters inoculated with Leishmanisis braziliensis. As result, the quantification of the model's variables related to the main biological parameters of skin were obtained, such as: diameter and volumetric fraction of keratinocytes, collagen; volumetric fraction of hemoglobin, and oxygen saturation. Those parameters show statistically significant differences among the different stages of the CL ulcer formation. We found that these differences are coherent with histopathological manifestations reported in the literature for the main phases of CL formation.