Project description:BackgroundSimultaneous left ventricular (LV) and aortic (Ao) pressure gradient assessment has been rendered challenging since the recall of the Langston catheter. Here we describe a simple method for simultaneous LV and Ao pressure gradient assessment using a Swan-Ganz catheter.Case summaryWe describe two cases where assessment of simultaneous left ventricle and Ao valve gradients was done using a Swan-Ganz catheter to assess the degree of Ao stenosis and dynamic LV outflow obstruction.DiscussionUsing Swan-Ganz catheter assessment of simultaneous left ventricle and Ao valve gradients can simplify the procedure with reduced cost and increased patient safety.
Project description:Assessing hemodynamics, especially central venous pressure (CVP), is essential in heart failure (HF). Right heart catheterization (RHC) is the gold-standard, but non-invasive methods are also needed. However, the role of 2-dimensional echocardiography (2DE) remains uncertain, and 3-dimensional echocardiography (3DE) is not always available. This study investigated standardized and breathing-corrected assessment of inferior vena cava (IVC) volume using echocardiography (2DE and 3DE) versus CVP determined invasively using RHC. Sixty consecutive HF patients were included (82% male, age 54 ± 11 years, New York Heart Association class 2.23 ± 0.8, ejection fraction 46 ± 18.4%, brain natriuretic peptide 696.93 ± 773.53 pg/mL). All patients underwent Swan-Ganz RHC followed by 2DE and 3DE, and IVC volume assessment. On 2DE, mean IVC size was 18.3 ± 5.5 mm and 13.8 ± 6 mm in the largest deflection and shortest distention, respectively. Mean CVP from RHC was 9.3 ± 5.3 mmHg. Neither 2DE nor 3DE showed acceptable correlation with invasively measured CVP; IVC volume acquisition showed optimal correlation with RHC CVP (0.64; 95% confidence interval 0.46-0.77), with better correlation when mitral valve early diastole E wave and right ventricular end-diastolic diameter were added. Using a CVP cut-point of 10 mmHg, receiver operating characteristic curve showed true positivity (specificity) of 0.90 and sensitivity of 62% for predicting CVP. A validation study confirmed these findings and verified the high predictive value of IVC volume assessment. Neither 2DE nor 3DE alone can reliably mirror CVP, but IVC volume acquisition using echocardiography allows non-invasive and adequate approximation of CVP. Correlation with invasively measured pressure was strongest when CVP is > 10 mmHg.
Project description:Pulmonary arterial hypertension (PAH) is a devastating condition affecting the pulmonary microvascular wall and endothelium, resulting in their partial or total obstruction. Despite a combination of expensive vasodilatory therapies, mortality remains high. Personalized therapeutic approaches, based on access to patient material to unravel patient specificities, could move the field forward. An innovative technique involving harvesting pulmonary arterial endothelial cells (PAECs) at the time of diagnosis was recently described. The aim of the present study was to fine-tune the initial technique and to phenotype the evolution of PAECs in vitro subcultures. PAECs were harvested from Swan-Ganz pulmonary arterial catheters during routine diagnostic or follow up right heart catheterization. Collected PAECs were phenotyped by flow cytometry and immunofluorescence focusing on endothelial-specific markers. We highlight the ability to harvest patients' PAECs and to maintain them for up to 7-12 subcultures. By tracking the endothelial phenotype, we observed that PAECs could maintain an endothelial phenotype for several weeks in culture. The present study highlights the unique opportunity to obtain homogeneous subcultures of primary PAECs from patients at diagnosis and follow-up. In addition, it opens promising perspectives regarding tailored precision medicine for patients suffering from rare pulmonary vascular diseases.
Project description:Intravascular catheter related bloodstream infections (CRBSIs) are a leading cause of hospital-acquired infections worldwide, resulting not only in the burden of cost and morbidity for patients but also in the over-consumption of medical resources for hospitals and health care organizations. In this study, a novel auranofin releasing antibacterial and antibiofilm polyurethane (PU) catheter coating was developed and investigated for future use in preventing CRBSIs. Auranofin is an antirheumatic drug with recently identified antimicrobial properties. The drug carrier, PU, acts as a barrier surrounding the antibacterial agent, auranofin, to extend the drug release profile and improve its long-term antibacterial and antibiofilm efficacy and potentially the length of catheter implantation within a patient. The PU+auranofin coatings developed here were found to be highly stretchable (exhibiting ~500% percent elongation), which is important for the compliance of the material on a flexible catheter. PU+auranofin coated catheters were able to inhibit the growth of methicillin-resistant Staphylococcus aureus (MRSA) for 8 to 26 days depending on the specific drug concentration utilized during the dip coating process. The PU+auranofin coated catheters were also able to completely inhibit MRSA biofilm formation in vitro, an effect that was not observed with auranofin or PU alone. Lastly, these coatings were found to be hemocompatible with human erythrocytes and maintain liver cell viability.
Project description:We demonstrate a methodology which both improves oxygen transport and reduces or eliminates bubble formation in a novel hyperbaric membrane oxygenator catheter model system. Angular oscillations were introduced to a bundle of hollow fiber membranes (HFMs) supplied with hyperbaric 100% oxygen at average gauge pressures up to 0.35 barg. Oscillating bundles enabled delivery of an oxygen flux of up to 400 mL min-1 m-2 in an aqueous solution, a doubling over a previous non-oscillating setup. Similarly, the addition of angular oscillations facilitated a five-fold reduction in pressure to achieve similar oxygen flux. The increased angular speed of oscillation improved flux, while the addition of angular micro-oscillation variations resulted in flux reductions of 7-20% compared to continuous macro-oscillation only, depending on mixing conditions. However, semi-quantitative visual observation demonstrated that angular oscillations reduced or eliminated the instance of oxygen bubble formation on the HFMs. The modeled mass transfer coefficients indicated a quasi linear relationship between rotational velocity and flux, suggesting that faster oscillation speeds could further improve oxygen mass transport allowing for HFM bundles to maintain high oxygen fluxes while eliminating bubble formation. This encourages further development of our compact oxygenating catheter that could be used intravascularly.
Project description:SignificanceIntravascular imaging is key to investigations into atherosclerotic plaque pathobiology and cardiovascular diagnostics overall. The development of multimodal imaging devices compatible with intracoronary applications has the potential to address limitations of currently available single-modality systems.AimWe designed and characterized a robust, high performance multimodal imaging system that combines optical coherence tomography (OCT) and multispectral fluorescence lifetime imaging (FLIm) for intraluminal simultaneous assessment of structural and biochemical properties of coronary arteries.ApproachSeveral shortcomings of existing FLIm-OCT catheter systems are addressed by adopting key features, namely (1) a custom fiber optic rotary joint based on an air bearing, (2) a broadband catheter using a freeform reflective optics, and (3) integrated solid-state FLIm detectors. Improvements are quantified using a combination of experimental characterization and simulations.ResultsExcellent UV and IR coupling efficiencies and stability (IR: 75.7 % ± 0.4 % , UV: 45.7 % ± 0.35 % ) are achieved; high FLIm optical performance is obtained (UV beam FWHM: 50 μm) contemporaneously with excellent OCT beam quality (IR beam FWHM: 17 μm). High-quality FLIm OCT image of a human coronary artery specimen was acquired.ConclusionThe ability of this intravascular imaging system to provide comprehensive structural and biochemical properties will be valuable to further our understanding of plaque pathophysiology and improve cardiovascular diagnostics.