Project description:BackgroundPenicillin allergy is the most frequently reported drug allergy, yet most patients can tolerate the drug if challenged. Despite this discrepancy, large scale penicillin allergy de-labeling interventions have not been widely implemented in many health care systems. The application of a multi-method implementation science approach can provide key tools to study this evidence to practice gap and provide insight to successfully operationalize penicillin allergy evaluation in real-world clinical settings.MethodsWe followed a four-step process that leverages qualitative analysis to design evidence-based, actionable strategies to develop an intervention. First, we specified the clinician-perceived barriers to penicillin allergy de-labeling (intervention targets). We then mapped intervention targets onto Theoretical Domains Framework (domains and constructs) and found the root causes of behavior. Next, we linked root causes of behavior with intervention functions (BCW). In the final step, we synthesized participants' suggestions for process improvement with implementation strategies aligning with the intervention functions.ResultsEvidence-based strategies such as focused education and training in penicillin allergy evaluation can address knowledge and confidence barriers reported by frontline clinicians. Other key strategies involve developing a system of champions, improving communications systems, and restructuring the healthcare team. Implementation mapping can provide a powerful multi-method framework to study, design, and customize intervention strategies.ConclusionEmpowering clinicians beyond allergy specialists to conduct penicillin allergy assessments requires designing new workflows and systems and providing additional knowledge to those clinicians.
Project description:Positive allosteric modulators of the human sweet taste receptor have been developed as a new way of reducing dietary sugar intake. Besides their potential health benefit, the sweet taste enhancers are also valuable tool molecules to study the general mechanism of positive allosteric modulations of T1R taste receptors. Using chimeric receptors, mutagenesis, and molecular modeling, we reveal how these sweet enhancers work at the molecular level. Our data argue that the sweet enhancers follow a similar mechanism as the natural umami taste enhancer molecules. Whereas the sweeteners bind to the hinge region and induce the closure of the Venus flytrap domain of T1R2, the enhancers bind close to the opening and further stabilize the closed and active conformation of the receptor.
Project description:Background:Therapy resistant ulcers are wounds that remain open for a long time period and often arise from chronic venous disease, prolonged pressure or diabetes. For healing of chronic wounds, revitalization of the inert wound bed, which is achieved by angiogenic sprouting of new blood vessels is of great importance. An alternative treatment option to conventional therapies is the use of skin substitutes: dermal (DS), epidermal (ES) or bi-layered skin substitutes (SS). The aim of this study was to determine the mode of action of an autologous SS, ES and DS with regards to endothelial cell proliferation, migration and angiogenic sprouting into a fibrin hydrogel. Results:SS consists of a fully differentiated epidermis expanding over the acellular donor dermis (AD) which has become repopulated with fibroblasts. DS is the same construct as SS but without the epidermis and ES is the same construct as SS but without the fibroblasts. As a control, AD was used throughout. It was found that the bi-layered SS was the most potent substitute in inducing migration and sprouting of endothelial cells. The cross talk between dermis and epidermis resulted in the strongest induction of sprouting via VEGF and uPAR. ES stimulated sprouting more than DS again via VEGF and uPAR. The slight induction of sprouting mediated by DS was not mediated by VEGF, but was in part stimulated through uPAR. Conclusion:This in vitro study supports our clinical observations that a bi-layered SS is a strong stimulator of angiogenesis and therefore has the potential to revitalize an inert wound bed.
Project description:Despite the small number of gustatory sense neurons, Drosophila larvae are able to sense a wide range of chemicals. Although evidence for taste multimodality has been provided in single neurons, an overview of gustatory responses at the periphery is missing and hereby we explore whole-organ calcium imaging of the external taste center. We find that neurons can be activated by different combinations of taste modalities, including opposite hedonic valence and identify distinct temporal dynamics of response. Although sweet sensing has not been fully characterized so far in the external larval gustatory organ, we recorded responses elicited by sugar. Previous findings established that larval sugar sensing relies on the Gr43a pharyngeal receptor, but the question remains if external neurons contribute to this taste. Here, we postulate that external and internal gustation use distinct and complementary mechanisms in sugar sensing and we identify external sucrose sensing neurons.
Project description:Taste bud cells regenerate throughout life. Taste bud maintenance depends on continuous replacement of senescent taste cells with new ones generated by adult taste stem cells. More than a century ago it was shown that taste buds degenerate after their innervating nerves are transected and that they are not restored until after reinnervation by distant gustatory ganglion neurons. Thus, neuronal input, likely via neuron-supplied factors, is required for generation of differentiated taste cells and taste bud maintenance. However, the identity of such a neuron-supplied niche factor(s) remains unclear. Here, by mining a published RNA-sequencing dataset of geniculate ganglion neurons and by in situ hybridization, we demonstrate that R-spondin-2, the ligand of Lgr5 and its homologs Lgr4/6 and stem-cell-expressed E3 ligases Rnf43/Znrf3, is expressed in nodose-petrosal and geniculate ganglion neurons. Using the glossopharyngeal nerve transection model, we show that systemic delivery of R-spondin via adenovirus can promote generation of differentiated taste cells despite denervation. Thus, exogenous R-spondin can substitute for neuronal input for taste bud cell replenishment and taste bud maintenance. Using taste organoid cultures, we show that R-spondin is required for generation of differentiated taste cells and that, in the absence of R-spondin in culture medium, taste bud cells are not generated ex vivo. Thus, we propose that R-spondin-2 may be the long-sought neuronal factor that acts on taste stem cells for maintaining taste tissue homeostasis.
Project description:Taste stimuli are normally dissolved in saliva prior to interacting with their respective receptor targets. There are hundreds of proteins in saliva, and it has been hypothesized that these proteins could interact with either taste stimuli or taste receptors to alter taste signaling and diet acceptance. However, the impact of these proteins on feeding has been relatively unexplored using rodent models. We have developed a novel technique for saliva collection that allows us to link salivary protein expression with feeding behavior. First, we monitored the microstructure of rats' feeding patterns on a 0.375% quinine diet (Q-diet) while tracking changes in salivary protein expression. We found 5 protein bands were upregulated by diet exposure to Q-diet and upregulation of a subset of these bands were statistically related to increased diet acceptance, including changes in behavioral measures that are thought to represent both orosensory and postingestive signaling. In a second experiment, we measured the licking to a range of quinine solutions (0.01-1.0mM) before and after the animals were exposed to a tannic acid diet that altered salivary protein expression. Rats found the quinine solutions less aversive after salivary protein altering diets. In a third experiment we recorded the response of the chorda tympani (CT) nerve while delivering quinine solutions (0.3-30mM) to the front of the tongue dissolved in either "donor saliva" containing salivary proteins or donor saliva which has had the salivary proteins removed. Donor saliva was collected from a separate group of animals using isoproterenol and pilocarpine. The samples containing salivary proteins resulted in lower nerve responses than those without salivary proteins. Together these data suggest that salivary proteins are capable of altering taste-guided behaviors and taste nerve signaling.
Project description:Super-enhancers and stretch enhancers represent classes of transcriptional enhancers that have been shown to control the expression of cell identity genes and carry disease- and trait-associated variants. Specifically, super-enhancers are clusters of enhancers defined based on the binding occupancy of master transcription factors, chromatin regulators, or chromatin marks, while stretch enhancers are large chromatin-defined regulatory regions of at least 3,000 base pairs. Several studies have characterized these regulatory regions in numerous cell types and tissues to decipher their functional importance. However, the differences and similarities between these regulatory regions have not been fully assessed. We integrated genomic, epigenomic, and transcriptomic data from ten human cell types to perform a comparative analysis of super and stretch enhancers with respect to their chromatin profiles, cell type-specificity, and ability to control gene expression. We found that stretch enhancers are more abundant, more distal to transcription start sites, cover twice as much the genome, and are significantly less conserved than super-enhancers. In contrast, super-enhancers are significantly more enriched for active chromatin marks and cohesin complex, and more transcriptionally active than stretch enhancers. Importantly, a vast majority of super-enhancers (85%) overlap with only a small subset of stretch enhancers (13%), which are enriched for cell type-specific biological functions, and control cell identity genes. These results suggest that super-enhancers are transcriptionally more active and cell type-specific than stretch enhancers, and importantly, most of the stretch enhancers that are distinct from super-enhancers do not show an association with cell identity genes, are less active, and more likely to be poised enhancers.
Project description:Overconsumption of highly sugary foods contributes to increases in obesity and diabetes in our population, and initiatives are issued worldwide to reduce sugar content in food products. However, it is unclear how the presentation of reduced sugar content on food packages affects taste expectations of consumers. Based on the learned knowledge about negative health effects of sugar and the common belief that unhealthy food tastes better than healthy food, consumers might conclude that lower sugar levels are associated with higher healthiness and lower tastiness. Addressing this concern, we examined how quantitative information about sugar content without any verbal description influences consumers' health and taste expectations of dairy desserts. We asked participants to indicate the expected healthiness and tastiness of randomly sampled dairy desserts, while varying systematically the quantitative sugar information provided in a label presented with the desserts (numerical sugar level in grams per 100 grams of product: low vs. original vs. high). We assumed that quantitative sugar content is not equally associated with healthiness and tastiness of products and that numerical information about sugar content informs health more than taste expectations. Therefore, we predicted that consumers expect higher healthiness, but not to the same degree lower tastiness for products with reduced sugar contented compared to products with higher sugar content. The results of the present study are in line with this hypothesis. We found that consumers expected desserts with less sugar to be healthier than desserts with higher levels of sugar. The experimentally varied sugar levels did not affect the tastiness expectations. Notably, consumers did not follow the unhealthy = tasty intuition and did not devaluate the tastiness of desserts because of heightened healthiness expectations. Our findings suggest that sole numerical information about sugar content-an important nutritional value-is more diagnostic in the construction of healthiness rather than tastiness expectations of food products.