Project description:Recent statistics indicate that the human population is ageing rapidly. Healthy, but also diseased, elderly people are increasing. This trend is particularly evident in Western countries, where healthier living conditions and better cures are available. To understand the process leading to age-associated alterations is, therefore, of the highest relevance for the development of new treatments for age-associated diseases, such as cancer, diabetes, Alzheimer and cardiovascular accidents. Mechanistically, it is well accepted that the accumulation of intracellular damage determined by reactive oxygen species (ROS) might orchestrate the progressive loss of control over biological homeostasis and the functional impairment typical of aged tissues. Here, we review how epigenetics takes part in the control of stress stimuli and the mechanisms of ageing physiology and physiopathology. Alteration of epigenetic enzyme activity, histone modifications and DNA-methylation is, in fact, typically associated with the ageing process. Specifically, ageing presents peculiar epigenetic markers that, taken altogether, form the still ill-defined "ageing epigenome". The comprehension of mechanisms and pathways leading to epigenetic modifications associated with ageing may help the development of anti-ageing therapies.
Project description:Background:Preeclampsia (PE) is a heterogeneous, hypertensive disorder of pregnancy, with no robust biomarkers or effective treatments. We hypothesized that this heterogeneity is due to the existence of multiple subtypes of PE and, in support of this hypothesis, we recently identified five clusters of placentas within a large gene expression microarray dataset (N = 330), of which four (clusters 1, 2, 3, and 5) contained a substantial number of PE samples. However, while transcriptional analysis of placentas can subtype patients, we propose that the addition of epigenetic information could discern gene regulatory mechanisms behind the distinct PE pathologies, as well as identify clinically useful potential biomarkers. Results:We subjected 48 of our samples from transcriptional clusters 1, 2, 3, and 5 to Infinium HumanMethylation450 arrays. Samples belonging to transcriptional clusters 1-3 still showed visible relationships to each other by methylation, but cluster 5, with known chromosomal abnormalities, no longer formed a cohesive group. Within transcriptional clusters 2 and 3, controlling for fetal sex and gestational age in the identification of differentially methylated sites, compared to the healthier cluster 1, dramatically reduced the number of significant sites, but increased the percentage that demonstrated a strong linear correlation with gene expression (from 5% and 2% to 9% and 8%, respectively). Locations exhibiting a positive relationship between methylation and gene expression were most frequently found in CpG open sea enhancer regions within the gene body, while those with a significant negative correlation were often annotated to the promoter in a CpG shore region. Integrated transcriptome and epigenome analysis revealed modifications in TGF-beta signaling, cell adhesion, oxidative phosphorylation, and metabolism pathways in cluster 2 placentas, and aberrations in antigen presentation, allograft rejection, and cytokine-cytokine receptor interaction in cluster 3 samples. Conclusions:Overall, we have established DNA methylation alterations underlying a portion of the transcriptional development of "canonical" PE in cluster 2 and "immunological" PE in cluster 3. However, a significant number of the observed methylation changes were not associated with corresponding changes in gene expression, and vice versa, indicating that alternate methods of gene regulation will need to be explored to fully comprehend these PE subtypes.
Project description:Emerging evidence has demonstrated that upregulated expression of KIAA1199 in human cancer bodes for poor survival. The regulatory mechanism controlling KIAA1199 expression in cancer remains to be characterized. In the present study, we have isolated and characterized the human KIAA1199 promoter in terms of regulation of KIAA1199 gene expression. A 3.3 kb fragment of human genomic DNA containing the 5'-flanking sequence of the KIAA1199 gene possesses both suppressive and activating elements. Employing a deletion mutagenesis approach, a 1.4 kb proximal region was defined as the basic KIAA1199 promoter containing a TATA-box close to the transcription start site. A combination of 5'-primer extension study with 5'RACE DNA sequencing analysis revealed one major transcription start site that is utilized in the human KIAA1199 gene. Bioinformatics analysis suggested that the 1.4 kb KIAA1199 promoter contains putative activating regulatory elements, including activator protein-1(AP-1), Twist-1, and NF-?B sites. Sequential deletion and site-direct mutagenesis analysis demonstrated that the AP-1 and distal NF-?B sites are required for KIAA1199 gene expression. Further analyses using an electrophoretic mobility-shift assay and chromatin immunoprecipitation confirmed the requirement of these cis- and trans-acting elements in controlling KIAA1199 gene expression. Finally, we found that upregulated KIAA1199 expression in human breast cancer specimens correlated with hypomethylation of the regulatory region. Involvement of DNA methylation in regulation of KIAA1199 expression was recapitulated in human breast cancer cell lines. Taken together, our study unraveled the regulatory mechanisms controlling KIAA1199 gene expression in human cancer.
Project description:Single nucleotide polymorphisms and altered gene expression of components of the renin-angiotensin system (RAS) are associated with neurodegenerative diseases. Drugs that interact with the RAS have been shown to affect the course of neurodegenerative disease, suggesting that abnormalities in the RAS may contribute to neurodegenerative disease. A meta-analysis of genome-wide association studies and gene expression data for 14 RAS-related proteins was carried out for five neurodegenerative diseases: Alzheimer's disease, Parkinson's disease, narcolepsy, amyotrophic lateral sclerosis and multiple sclerosis. No single nucleotide polymorphisms in any of the 14 RAS-related protein genes were significantly associated with the five neurodegenerative diseases investigated. There was an inverse association between expression of ATP6AP2, which encodes the (pro)renin receptor, and multiple sclerosis, Alzheimer's disease and Parkinson's disease. An association of AGTR, which encodes the AT1 angiotensin II receptor, and Parkinson's disease and Alzheimer's disease was also observed. To date, no single nucleotide polymorphisms in components of the RAS can be definitively linked to the neurodegenerative diseases evaluated in this study. However, altered gene expression of several components of the RAS is associated with several neurodegenerative diseases, which may indicate that the RAS contributes to the pathology of these diseases.
Project description:Environmental or genetic perturbations lead to gene expression changes. While most analyses of these changes emphasize the presence of qualitative differences on just a few genes, we now know that changes are widespread. This large-scale variation has been linked to the exclusive influence of a global transcriptional program determined by the new physiological state of the cell. However, given the sophistication of eukaryotic regulation, we expect to have a complex architecture of specific control affecting this program. Here, we examine this architecture. Using data of Saccharomyces cerevisiae expression in different nutrient conditions, we first propose a five-sector genome partition, which integrates earlier models of resource allocation, as a framework to examine the deviations from the global control. In this scheme, we recognize invariant genes, whose regulation is dominated by physiology, specific genes, which substantially depart from it, and two additional classes that contain the frequently assumed growth-dependent genes. Whereas the invariant class shows a considerable absence of specific regulation, the rest is enriched by regulation at the level of transcription factors (TFs) and epigenetic modulators. We nevertheless find markedly different strategies in how these classes deviate. On the one hand, there are TFs that act in a unique way between partition constituents, and on the other, the action of chromatin modifiers is significantly diverse. The balance between regulatory strategies ultimately modulates the action of the general transcription machinery and therefore limits the possibility of establishing a unifying program of expression change at a genomic scale.
Project description:The nuclear receptor PPARγ is a master regulator of adipogenesis. PPARγ is highly expressed in adipose tissues and its expression is markedly induced during adipogenesis. In this review, we describe the current knowledge, as well as future directions, on transcriptional and epigenetic regulation of PPARγ expression during adipogenesis. Investigating the molecular mechanisms that control PPARγ expression during adipogenesis is critical for understanding the development of white and brown adipose tissues, as well as pathological conditions such as obesity and diabetes. The robust induction of PPARγ expression during adipogenesis also serves as an excellent model system for studying transcriptional and epigenetic regulation of cell-type-specific gene expression.