Project description:A seminested reverse transcription-PCR method coupled to membrane filtration was optimized to investigate the presence of norovirus (NV) RNA sequences in bottled and natural mineral waters. The recovery of viral particles by filtration varied between 28 and 45%, while the limit of detection of the overall method ranged from 6 to 95 viral particles. The assay was broadly reactive, as shown by the successful detection of 27 different viral strains representing 12 common genotypes of NVs. A total of 718 bottled and natural mineral water samples were investigated, including 640 samples of finished, spring, and line products (mostly 1 to 1.5 liters), collected from 36 different water brands of various types and from diverse geographic origins over a 2-year period. In addition, 78 samples of larger volume (10 and 400 to 500 liters) and environmental swabs were investigated. From the 1,436 analyses that were performed for the detection of NVs belonging to genogroups I and II, 34 samples (2.44%) were presumptively positive by seminested RT-PCR. However, confirmation by DNA sequence analysis revealed that all presumptive positive results were either due to nonspecific amplification or to cross-contamination. In conclusion, these results do not provide any evidence for the presence of NV genome sequences in bottled waters.
Project description:In April 2016, an outbreak of gastrointestinal illness (4,136 cases) occurred in Catalonia, Spain. We detected high levels of norovirus genotypes I and II in office water coolers associated with the outbreak. Infectious viral titer estimates were 33-49 genome copies/L for genotype I and 327-660 genome copies/L for genotype II.
Project description:The general goal of this data was to determine the concentration of fluoride and assess its risk in waters bottled in Iran. Seventy-one samples of different brands of bottled water were collected. Then, the fluoride concentration was measured through standard method for water and wastewater experiments. The non-carcinogenicity risk of fluoride for different groups of infants, children, teenagers, and adults was calculated by proper formula. The data presented here indicated that the mean concentration of fluoride in bottled waters was 0.272 mg/L, which is lower than the minimum world health organization (WHO) guideline. Further, the mean hazard quotient (HQ) values for fluoride across the groups of infants, children, teenagers, and adults with respective values of 0.0363, 0.2568, 0.1813, and 0.1452 were observed in 0, 1, 1, and 0 cases of HQ>1. Generally, in most of the tested brands, HQ value was less than 1, and this value was above 1 in only one brand of bottled water.
Project description:BackgroundNon-carbonated natural mineral waters contain microorganisms that regularly grow after bottling despite low concentrations of dissolved organic matter (DOM). Yet, the compositions of bottled water microbiota and organic substrates that fuel microbial activity, and how both change after bottling, are still largely unknown.ResultsWe performed a multifaceted analysis of microbiota and DOM diversity in 12 natural mineral waters from six European countries. 16S rRNA gene-based analyses showed that less than 10 species-level operational taxonomic units (OTUs) dominated the bacterial communities in the water phase and associated with the bottle wall after a short phase of post-bottling growth. Members of the betaproteobacterial genera Curvibacter, Aquabacterium, and Polaromonas (Comamonadaceae) grew in most waters and represent ubiquitous, mesophilic, heterotrophic aerobes in bottled waters. Ultrahigh-resolution mass spectrometry of DOM in bottled waters and their corresponding source waters identified thousands of molecular formulae characteristic of mostly refractory, soil-derived DOM.ConclusionsThe bottle environment, including source water physicochemistry, selected for growth of a similar low-diversity microbiota across various bottled waters. Relative abundance changes of hundreds of multi-carbon molecules were related to growth of less than ten abundant OTUs. We thus speculate that individual bacteria cope with oligotrophic conditions by simultaneously consuming diverse DOM molecules.
Project description:Global bottled water consumption has largely increased (14.35 billion gallons in 2020) [1], [2], [3], [4], [5] during the last decade since consumers are demanding healthier and safer forms of rehydration. Bottled water sources are normally labeled as mountainous and pristine mineral springs (fed by rainfall and snow/glacier melting processes), deep groundwater wells or industrial purified water. The advent of numerous international and national-based bottled water brands has simultaneously raised a worldwide awareness related to the water source and chemical content traceability [6]. Here, we present the first database of stable isotope compositions and reported chemical concentrations from imported and national-based bottled waters in Costa Rica. In total, 45 bottled waters produced in Costa Rica and 31 imported from USA, Europe, Oceania, and other countries of Central America were analyzed for δ18O, δ2H, and d-excess. Chemical compositions were obtained from available bottle labels. National-based bottle waters ranged from -2.47‰ to -10.65‰ in δ18O and from -10.4‰ to -78.0‰ in δ2H, while d-excess varied from +4.2‰ up to +17.0‰. International bottle waters ranged between -2.21‰ and -11.03‰ in δ18O and from -11.3‰ up to -76.0‰ in δ2H, while d-excess varied from +5.0‰ up to +19.1‰. In Costa Rica, only 19% of the brands reported chemical parameters such as Na+, K+, Ca+2, Mg+2, F-, Cl-, NO3 -, SO4 -2, CO3 -2, SiO2, dry residue, and pH; whereas 27% of the international products reported similar parameters. The absence of specific geographic coordinates or water source origin limited a spatial analysis to validate bottled water isotope compositions versus available isoscapes in Costa Rica [7]. This database highlights the potential and relevance of the use of water stable isotope compositions to improve the traceability of bottled water sources and the urgent need of more robust legislation in order to provide detailed information (i.e., water source, chemical composition, purification processes) to the final consumers.
Project description:The presence of human norovirus in the aquatic environment can cause outbreaks related to recreational activities and the consumption of norovirus-contaminated clams. In this study, we investigated the prevalence of norovirus genogroups I (GI) and II (GII) in the coastal aquatic environment in South Korea (March 2014 to February 2015). A total of 504 water samples were collected periodically from four coastal areas (total sites = 63), of which 44 sites were in estuaries (clam fisheries) and 19 were in inflow streams. RT-PCR analysis targeting ORF2 region C revealed that 20.6% of the water samples were contaminated by GI (13.3%) or GII (16.6%). The prevalence of human norovirus was higher in winter/spring than in summer/fall, and higher in inflow streams (50.0%) than in estuaries (7.9%). A total of 229 human norovirus sequences were identified from the water samples, and phylogenetic analysis showed that the sequences clustered into eight GI genotypes (GI.1, 2, 3, 4, 5, 6, 7, and 9) and nine GII genotypes (GII.2, 3, 4, 5, 6, 11, 13, 17, and 21). This study highlighted three issues: 1) a strong correlation between norovirus contamination via inflow streams and coastal areas used in clam fisheries; 2) increased prevalence of certain non-GII.4 genotypes, exceeding that of the GII.4 pandemic variants; 3) seasonal shifts in the dominant genotypes of both GI and GII.
Project description:BackgroundNoroviruses are important enteric pathogens in humans and animals. Recently, we reported a novel canine norovirus (CaNoV) in dogs with diarrhea belonging to a new genogroup (GVI). No data are available on exposure of humans to this virus.MethodsSera from 373 small animal veterinarians and 120 age-matched population controls were tested for IgG antibodies to CaNoV by a recombinant virus like particle based enzyme-linked immunosorbent assay.ResultsAntibodies to CaNoV were found in 22.3% of the veterinarians and 5.8% of the control group (p < 0.001). Mean corrected OD450 values for CaNoV antibodies were significantly higher in small animal veterinarians compared to the control group.ConclusionsThese findings suggest that CaNoV may infect humans and small animal veterinarians are at an increased risk for exposure to this virus. Additional studies are needed to assess if this virus is able to cause disease in humans.
Project description:Murine norovirus is a fecal-orally transmitted pathogen in mice which belongs to the same genus as human norovirus. Microviruses are bacteriophages with small circular single-stranded DNA genomes, belonging to the family Microviridae. Here, we report the genome sequences of five microviruses and one murine norovirus obtained from the intestinal content of a lab mouse.
Project description:Noroviruses are the leading cause of human gastroenteritis worldwide. Here, we sequenced the open reading frame 1 (ORF1)-ORF2 junction region of norovirus strains isolated from 20 human stool samples. Samples were collected between 2014 and 2017 in Pernambuco State, Brazil. Phylogenetic analyses identified four norovirus GII genotypes circulating in this area of the country.
Project description:BackgroundNorovirus is a leading cause of worldwide and nosocomial gastroenteritis. The study aim was to assess the utility of molecular epidemiology using full genome sequences compared to routine infection prevention and control (IPC) investigations.MethodsNorovirus genomes were generated from new episodes of norovirus at a pediatric tertiary referral hospital over a 19-month period (n = 182). Phylogeny identified clusters of related sequences that were verified using epidemiological and clinical data.ResultsTwenty-four clusters of related norovirus sequences ("sequence clusters") were observed, including 8 previously identified by IPC investigations ("IPC outbreaks"). Seventeen sequence clusters (involving 77/182 patients) were corroborated by epidemiological data ("epidemiologically supported clusters"), suggesting transmission between patients. Linked infections were identified among 44 patients who were missed by IPC investigations. Thirty-three percent of norovirus sequences were linked, suggesting nosocomial transmission; 24% of patients had nosocomial infections from an unknown source; and 43% were norovirus positive on admission.ConclusionsWe show there are frequent introductions of multiple norovirus strains with extensive onward nosocomial transmission of norovirus in a pediatric hospital with a high proportion of immunosuppressed patients nursed in isolation. Phylogenetic analysis using full genome sequences is more sensitive than classic IPC investigations for identifying linked cases and should be considered when investigating norovirus nosocomial transmission. Sampling of staff, visitors, and the environment may be required for complete understanding of infection sources and transmission routes in patients with nosocomial infections not linked to other patients and among patients with phylogenetically linked cases but no evidence of direct contact.