Project description:Molecules that alter the normal dynamics of microtubule assembly and disassembly include many anticancer drugs in clinical use. So far all such therapeutics target β-tubulin, and structural biology has explained the basis of their action and permitted design of new drugs. However, by shifting the profile of β-tubulin isoforms, cancer cells become resistant to treatment. Compounds that bind to α-tubulin are less well characterized and unexploited. The natural product pironetin is known to bind to α-tubulin and is a potent inhibitor of microtubule polymerization. Previous reports had identified that pironetin reacts with lysine-352 residue however analogues designed on this model had much lower potency, which was difficult to explain, hindering further development. We report crystallographic and mass spectrometric data that reveal that pironetin forms a covalent bond to cysteine-316 in α-tubulin via a Michael addition reaction. These data provide a basis for the rational design of α-tubulin targeting chemotherapeutics.
Project description:Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.
Project description:Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.
Project description:Gasdermin D (GSDMD) is the common effector for cytokine secretion and pyroptosis downstream of inflammasome activation and was previously shown to form large transmembrane pores after cleavage by inflammatory caspases to generate the GSDMD N-terminal domain (GSDMD-NT)1-10. Here we report that GSDMD Cys191 is S-palmitoylated and that palmitoylation is required for pore formation. S-palmitoylation, which does not affect GSDMD cleavage, is augmented by mitochondria-generated reactive oxygen species (ROS). Cleavage-deficient GSDMD (D275A) is also palmitoylated after inflammasome stimulation or treatment with ROS activators and causes pyroptosis, although less efficiently than palmitoylated GSDMD-NT. Palmitoylated, but not unpalmitoylated, full-length GSDMD induces liposome leakage and forms a pore similar in structure to GSDMD-NT pores shown by cryogenic electron microscopy. ZDHHC5 and ZDHHC9 are the major palmitoyltransferases that mediate GSDMD palmitoylation, and their expression is upregulated by inflammasome activation and ROS. The other human gasdermins are also palmitoylated at their N termini. These data challenge the concept that cleavage is the only trigger for GSDMD activation. They suggest that reversible palmitoylation is a checkpoint for pore formation by both GSDMD-NT and intact GSDMD that functions as a general switch for the activation of this pore-forming family.
Project description:Human Gasdermin D (GSDMD) is a key mediator of pyroptosis, a pro-inflammatory form of cell death occurring downstream of inflammasome activation as part of the innate immune defence. Upon cleavage by inflammatory caspases in the cytosol, the N-terminal domain of GSDMD forms pores in the plasma membrane resulting in cytokine release and eventually cell death. Targeting GSDMD is an attractive way to dampen inflammation. In this study, six GSDMD targeting nanobodies are characterized in terms of their binding affinity, stability, and effect on GSDMD pore formation. Three of the nanobodies inhibit GSDMD pore formation in a liposome leakage assay, although caspase cleavage was not perturbed. We determine the crystal structure of human GSDMD in complex with two nanobodies at 1.9 Å resolution, providing detailed insights into the GSDMD-nanobody interactions and epitope binding. The pore formation is sterically blocked by one of the nanobodies that binds to the oligomerization interface of the N-terminal domain in the multi-subunit pore assembly. Our biochemical and structural findings provide tools for studying inflammasome biology and build a framework for the design of GSDMD targeting drugs.
Project description:Gasdermins are a family of pore-forming proteins controlling an inflammatory cell death reaction in the mammalian immune system. The pore-forming ability of the gasdermin proteins is released by proteolytic cleavage with the removal of their inhibitory C-terminal domain. Recently, gasdermin-like proteins have been discovered in fungi and characterized as cell death-inducing toxins in the context of conspecific non-self-discrimination (allorecognition). Although functional analogies have been established between mammalian and fungal gasdermins, the molecular pathways regulating gasdermin activity in fungi remain largely unknown. Here, we characterize a gasdermin-based cell death reaction controlled by the het-Q allorecognition genes in the filamentous fungus Podospora anserina We show that the cytotoxic activity of the HET-Q1 gasdermin is controlled by proteolysis. HET-Q1 loses a ∼5-kDa C-terminal fragment during the cell death reaction in the presence of a subtilisin-like serine protease termed HET-Q2. Mutational analyses and successful reconstitution of the cell death reaction in heterologous hosts (Saccharomyces cerevisiae and human 293T cells) suggest that HET-Q2 directly cleaves HET-Q1 to induce cell death. By analyzing the genomic landscape of het-Q1 homologs in fungi, we uncovered that the vast majority of the gasdermin genes are clustered with protease-encoding genes. These HET-Q2-like proteins carry either subtilisin-like or caspase-related proteases, which, in some cases, correspond to the N-terminal effector domain of nucleotide-binding and oligomerization-like receptor proteins. This study thus reveals the proteolytic regulation of gasdermins in fungi and establishes evolutionary parallels between fungal and mammalian gasdermin-dependent cell death pathways.
Project description:Zampanolide and its less active analog dactylolide compete with paclitaxel for binding to microtubules and represent a new class of microtubule-stabilizing agent (MSA). Mass spectrometry demonstrated that the mechanism of action of both compounds involved covalent binding to ?-tubulin at residues N228 and H229 in the taxane site of the microtubule. Alkylation of N228 and H229 was also detected in ?,?-tubulin dimers. However, unlike cyclostreptin, the other known MSA that alkylates ?-tubulin, zampanolide was a strong MSA. Modeling the structure of the adducts, using the NMR-derived dactylolide conformation, indicated that the stabilizing activity of zampanolide is likely due to interactions with the M-loop. Our results strongly support the existence of the luminal taxane site of microtubules in tubulin dimers and suggest that microtubule nucleation induction by MSAs may proceed through an allosteric mechanism.
Project description:Cysteine-string protein (CSP) is an extensively palmitoylated DnaJ-family chaperone, which exerts an important neuroprotective function. Palmitoylation is required for the intracellular sorting and function of CSP, and thus it is important to understand how this essential modification of CSP is regulated. Recent work identified 23 putative palmitoyl transferases containing a conserved DHHC domain in mammalian cells, and here we show that palmitoylation of CSP is enhanced specifically by co-expression of the Golgi-localized palmitoyl transferases DHHC3, DHHC7, DHHC15, or DHHC17. Indeed, these DHHC proteins promote stable membrane attachment of CSP, which is otherwise cytosolic. An inverse correlation was identified between membrane affinity of unpalmitoylated CSP mutants and subsequent palmitoylation: mutants with an increased membrane affinity localize to the endoplasmic reticulum (ER) and are physically separated from the Golgi-localized DHHC proteins. Palmitoylation of an ER-localized mutant could be rescued by brefeldin A treatment, which promotes the mixing of ER and Golgi membranes. Interestingly though, the palmitoylated mutant remained at the ER following brefeldin A washout and did not traffic to more distal membrane compartments. We propose that CSP has a weak membrane affinity that allows the protein to locate its partner Golgi-localized DHHC proteins directly by membrane "sampling." Mutations that enhance membrane association prevent sampling and lead to accumulation of CSP on cellular membranes such as the ER. The coupling of CSP palmitoylation to Golgi membranes may thus be an important requirement for subsequent sorting.
Project description:SARS-CoV-2 is an emerging coronavirus that causes dysfunctions in multiple human cells and tissues. Studies have looked at the entry of SARS-CoV-2 into host cells mediated by the viral spike protein and human receptor ACE2. However, less is known about the cellular immune responses triggered by SARS-CoV-2 viral proteins. Here, we show that the nucleocapsid of SARS-CoV-2 inhibits host pyroptosis by blocking Gasdermin D (GSDMD) cleavage. SARS-CoV-2-infected monocytes show enhanced cellular interleukin 1b (IL-1b) expression, but reduced IL-1b secretion. While SARS-CoV-2 infection promotes activation of the NLRP3 inflammasome and caspase-1, GSDMD cleavage and pyroptosis are inhibited in infected human monocytes. SARS-CoV-2 nucleocapsid protein associates with GSDMD in cells and inhibits GSDMD cleavage in vitro and in vivo. The nucleocapsid binds the GSDMD linker region and hinders GSDMD processing by caspase-1. These insights into how SARS-CoV-2 antagonizes cellular inflammatory responses may open new avenues for treating COVID-19 in the future.
Project description:Monkeypox virus (MPXV) infections in humans cause neurological disorders while studies of MPXV-infected animals indicate that the virus penetrates the brain. Pyroptosis is an inflammatory type of regulated cell death, resulting from plasma membrane rupture (PMR) due to oligomerization of cleaved gasdermins to cause membrane pore formation. Herein, we investigated the human neural cell tropism of MPXV compared to another orthopoxvirus, vaccinia virus (VACV), as well as its effects on immune responses and cell death. Astrocytes were most permissive to MPXV (and VACV) infections, followed by microglia and oligodendrocytes, with minimal infection of neurons based on plaque assays. Aberrant morphological changes were evident in MPXV-infected astrocytes that were accompanied with viral protein (I3) immunolabelling and detection of over 125 MPXV-encoded proteins in cell lysates by mass spectrometry. MPXV- and VACV-infected astrocytes showed increased expression of immune gene transcripts (IL12, IRF3, IL1B, TNFA, CASP1, and GSDMB). However, MPXV infection of astrocytes specifically induced proteolytic cleavage of gasdermin B (GSDMB) (50 kDa), evident by the appearance of cleaved N-terminal-GSDMB (30 kDa) and C-terminal- GSDMB (18 kDa) fragments. GSDMB cleavage was associated with release of lactate dehydrogenase and increased cellular nucleic acid staining, indicative of PMR. Pre-treatment with dimethyl fumarate reduced cleavage of GSDMB and associated PMR in MPXV-infected astrocytes. Human astrocytes support productive MPXV infection, resulting in inflammatory gene induction with accompanying GSDMB-mediated pyroptosis. These findings clarify the recently recognized neuropathogenic effects of MPXV in humans while also offering potential therapeutic options.