Project description:Bacterial tyrosine-kinases share no resemblance with their eukaryotic counterparts and they have been unified in a new protein family named BY-kinases. These enzymes have been shown to control several biological functions in the bacterial cells. In recent years biochemical studies, sequence analyses and structure resolutions allowed the deciphering of a common signature. However, BY-kinase sequence annotations in primary databases remain incomplete. This prompted us to develop a specialized database of computer-annotated BY-kinase sequences: the Bacterial protein tyrosine-kinase database (BYKdb). BY-kinase sequences are first identified, thanks to a workflow developed in a previous work. A second workflow annotates the UniProtKB entries in order to provide the BYKdb entries. The database can be accessed through a web interface that allows static and dynamic queries and offers integrated sequence analysis tools. BYKdb can be found at http://bykdb.ibcp.fr.
Project description:Structure-based drug design of protein-kinase inhibitors has been facilitated by availability of an enormous number of structures in the Protein Databank (PDB), systematic analyses of which can provide insight into the factors that govern ligand-protein kinase interactions and into the conformational variability of the protein kinases. In this study, a nonredundant database containing 755 unique, curated, and annotated PDB protein kinase-inhibitor complexes (each consisting of a single protein kinase chain, a ligand, and water molecules around the ligand) was created. With this dataset, analyses were performed of protein conformational variability and interactions of ligands with 11 P-loop residues. Analysis of ligand-protein interactions included ligand atom preference, ligand-protein hydrogen bonds, and the number and position of crystallographic water molecules around important P-loop residues. Analysis of variability in the conformation of the P-loop considered backbone and side-chain dihedral angles, and solvent accessible surface area (SASA). A distorted conformation of the P-loop was observed for some of the protein kinase structures. Lower SASA was observed for the hydrophobic residue in beta1 of several members of the AGC family of protein kinases. Our systematic studies were performed amino acid-by-amino acid, which is unusual for analyses of protein kinase-inhibitor complexes.
Project description:KinMutBase (http://www.uta.fi/imt/bioinfo/KinMutBase/) is a registry of mutations in human protein kinases related to disorders. Kinases are essential cellular signaling molecules, in which mutations can lead to diseases, including immunodeficiencies, cancers and endocrine disorders. The first release of KinMutBase contained information for protein tyrosine kinases. The current release includes also serine/threonine protein kinases, as well as an update of the tyrosine kinases. There are 251 entries altogether, representing 337 families and 621 patients. Mutations appear both in conserved hallmark residues of the kinases as well as in non-homologous sites. The KinMutBase WWW pages provide plenty of information, namely mutation statistics and display, clickable sequences with mutations and changes to restriction enzyme patterns.
Project description:Protein phosphorylation plays critical roles in a variety of intracellular signaling pathways and physiological functions that are controlled by neurotransmitters and neuromodulators in the brain. Dysregulation of these signaling pathways has been implicated in neurodevelopmental disorders, including autism spectrum disorder, attention deficit hyperactivity disorder and schizophrenia. While recent advances in mass spectrometry-based proteomics have allowed us to identify approximately 280,000 phosphorylation sites, it remains largely unknown which sites are phosphorylated by which kinases. To overcome this issue, previously, we developed methods for comprehensive screening of the target substrates of given kinases, such as PKA and Rho-kinase, upon stimulation by extracellular signals and identified many candidate substrates for specific kinases and their phosphorylation sites. Here, we developed a novel online database to provide information about the phosphorylation signals identified by our methods, as well as those previously reported in the literature. The "KANPHOS" (Kinase-Associated Neural Phospho-Signaling) database and its web portal were built based on a next-generation XooNIps neuroinformatics tool. To explore the functionality of the KANPHOS database, we obtained phosphoproteomics data for adenosine-A2A-receptor signaling and its downstream MAPK-mediated signaling in the striatum/nucleus accumbens, registered them in KANPHOS, and analyzed the related pathways.
Project description:The number of protein kinase inhibitors (PKIs) approved worldwide continues to grow steadily, with 39 drugs approved in the period between 2001 and January 2018. PKIs on the market have been the subject of many reviews, and structure-property relationships specific to this class of drugs have been inferred. However, the large number of PKIs under development is often overlooked. In this paper, we present PKIDB (Protein Kinase Inhibitor Database), a monthly-updated database gathering approved PKIs as well as PKIs currently in clinical trials. The database compiles currently 180 inhibitors ranging from phase 0 to 4 clinical trials along with annotations extracted from seven public resources. The distribution and property ranges of standard physicochemical properties are presented. They can be used as filters to better prioritize compound selection for future screening campaigns. Interestingly, more than one-third of the kinase inhibitors violate at least one Lipinski's rule. A Principal Component Analysis (PCA) reveals that Type-II inhibitors are mapped to a distinct chemical space as compared to orally administrated drugs as well as to other types of kinase inhibitors. Using a Principal Moment of Inertia (PMI) analysis, we show that PKIs under development tend to explore new shape territories as compared to approved PKIs. In order to facilitate the analysis of the protein space, the kinome tree has been annotated with all protein kinases being targeted by PKIs. Finally, we analyzed the pipeline of the pharmaceutical companies having PKIs on the market or still under development. We hope that this work will assist researchers in the kinase field in identifying and designing the next generation of kinase inhibitors for still untargeted kinases. The PKIDB database is freely accessible from a website at http://www.icoa.fr/pkidb and can be easily browsed through a user-friendly spreadsheet-like interface.
Project description:Reversible phosphorylation is a key mechanism for regulating protein function. Thus it is of high interest to know which kinase can phosphorylate which proteins. Comprehensive information about phosphorylation sites in Arabidopsis proteins is hosted within the PhosPhAt database (http://phosphat.mpimp-golm.mpg.de). However, our knowledge of the kinases that phosphorylate those sites is dispersed throughout the literature and very difficult to access, particularly for investigators seeking to interpret large scale and high-throughput experiments. Therefore, we aimed to compile information on kinase-substrate interactions and kinase-specific regulatory information and make this available via a new functionality embedded in PhosPhAt. Our approach involved systematic surveying of the literature for regulatory information on the members of the major kinase families in Arabidopsis thaliana, such as CDPKs, MPK(KK)s, AGC kinases and SnRKs, as well as individual kinases from other families. To date, we have researched more than 4450 kinase-related publications, which collectively contain information on about 289 kinases. Users can now query the PhosPhAt database not only for experimental and predicted phosphorylation sites of individual proteins, but also for known substrates for a given kinase or kinase family. Further developments include addition of new phosphorylation sites and visualization of clustered phosphorylation events, known as phosphorylation hotspots.
Project description:Protein kinases play a crucial role in cell signaling and are important drug targets in several therapeutic areas. The KLIFS database contains detailed structural kinase-ligand interaction information derived from all (>2900) structures of catalytic domains of human and mouse protein kinases deposited in the Protein Data Bank in order to provide insights into the structural determinants of kinase-ligand binding and selectivity. The kinase structures have been processed in a consistent manner by systematically analyzing the structural features and molecular interaction fingerprints (IFPs) of a predefined set of 85 binding site residues with bound ligands. KLIFS has been completely rebuilt and extended (>65% more structures) since its first release as a data set, including: novel automated annotation methods for (i) the assessment of ligand-targeted subpockets and the analysis of (ii) DFG and (iii) αC-helix conformations; improved and automated protocols for (iv) the generation of sequence/structure alignments, (v) the curation of ligand atom and bond typing for accurate IFP analysis and (vi) weekly database updates. KLIFS is now accessible via a website (http://klifs.vu-compmedchem.nl) that provides a comprehensive visual presentation of different types of chemical, biological and structural chemogenomics data, and allows the user to easily access, compare, search and download the data.
Project description:Mutations in kinases are abundant and critical to study signaling pathways and regulatory roles in human disease, especially in cancer. Somatic mutations in kinase genes can affect drug treatment, both sensitivity and resistance, to clinically used kinase inhibitors. Here, we present a newly constructed database, KinaseMD (kinase mutations and drug response), to structurally and functionally annotate kinase mutations. KinaseMD integrates 679 374 somatic mutations, 251 522 network-rewiring events, and 390 460 drug response records curated from various sources for 547 kinases. We uniquely annotate the mutations and kinase inhibitor response in four types of protein substructures (gatekeeper, A-loop, G-loop and αC-helix) that are linked to kinase inhibitor resistance in literature. In addition, we annotate functional mutations that may rewire kinase regulatory network and report four phosphorylation signals (gain, loss, up-regulation and down-regulation). Overall, KinaseMD provides the most updated information on mutations, unique annotations of drug response especially drug resistance and functional sites of kinases. KinaseMD is accessible at https://bioinfo.uth.edu/kmd/, having functions for searching, browsing and downloading data. To our knowledge, there has been no systematic annotation of these structural mutations linking to kinase inhibitor response. In summary, KinaseMD is a centralized database for kinase mutations and drug response.
Project description:BackgroundProtein phosphorylation is one of the most prevalent posttranslational modifications involved in molecular control of cellular processes, and is mediated by over 520 protein kinases in humans and other mammals. Identification of the protein kinases responsible for phosphorylation events is key to understanding signaling pathways. Unbiased phosphoproteomics experiments have generated a wealth of data that can be used to identify protein kinase targets and their preferred substrate sequences.MethodsThis study utilized prior data from mass spectrometry-based studies identifying sites of protein phosphorylation after in vitro incubation of protein mixtures with recombinant protein kinases. PTM-Logo software was used with these data to generate position-dependent Shannon information matrices and sequence motif 'logos'. Webpages were constructed for facile access to logos for each kinase and a new stand-alone application was written in Python that uses the position-dependent Shannon information matrices to identify kinases most likely to phosphorylate a particular phosphorylation site.ResultsA database of kinase substrate target preference logos allows browsing, searching, or downloading target motif data for each protein kinase ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/ ). These logos were combined with phylogenetic analysis of protein kinase catalytic sequences to reveal substrate preference patterns specific to particular groups of kinases ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinaseTree.html ). A stand-alone program, KinasePredictor, is provided ( https://esbl.nhlbi.nih.gov/Databases/Kinase_Logos/KinasePredictor.html ). It takes as input, amino-acid sequences surrounding a given phosphorylation site and generates a ranked list of protein kinases most likely to phosphorylate that site.ConclusionsThis study provides three new resources for protein kinase characterization. It provides a tool for prediction of kinase-substrate interactions, which in combination with other types of data (co-localization, etc.), can predict which kinases are likely responsible for a given phosphorylation event in a given tissue. Video Abstract.
Project description:BACKGROUND:The kinase pocket structural information is important for drug discovery targeting cancer or other diseases. Although some kinase sequence, structure or drug databases have been developed, the databases cannot be directly used in the kinase drug study. Therefore, a comprehensive database of human kinase protein pockets is urgently needed to be developed. RESULTS:Here, we have developed HKPocket, a comprehensive Human Kinase Pocket database. This database provides sequence, structure, hydrophilic-hydrophobic, critical interactions, and druggability information including 1717 pockets from 255 kinases. We further divided these pockets into 91 pocket clusters using structural and position features in each kinase group. The pocket structural information would be useful for preliminary drug screening. Then, the potential drugs can be further selected and optimized by analyzing the sequence conservation, critical interactions, and hydrophobicity of identified drug pockets. HKPocket also provides online visualization and pse files of all identified pockets. CONCLUSION:The HKPocket database would be helpful for drug screening and optimization. Besides, drugs targeting the non-catalytic pockets would cause fewer side effects. HKPocket is available at http://zhaoserver.com.cn/HKPocket/HKPocket.html.