Project description:Acute myeloid leukemia (AML) is an aggressive, often fatal hematopoietic malignancy. All-trans retinoic acid (atRA), one of the first molecularly targeted drugs in oncology, has greatly improved the outcome of a subtype of AML, acute promyelocytic leukemia (APL). In contrast, atRA has so far provided little therapeutic benefit in the much larger group of patients with non-APL AML. Attempts to identify genetically or molecularly defined subgroups of patients that may respond to atRA have not yielded consistent results. Since AML is a stem cell-driven disease, understanding the effectiveness of atRA may require an appreciation of its impact on AML stem cells. Recent studies reported that atRA decreased stemness of AML with an FLT3-ITD mutation, yet increased it in AML1-ETO driven or EVI1-overexpressing AML. This review summarizes the role of atRA in normal hematopoiesis and in AML, focusing on its impact on AML stem cells.
Project description:IntroductionAcute promyelocytic leukemia (APL) is a subtype of acute myeloid leukemia (AML) with a better prognosis. But early death (ED) rate remains high. APL patients are simultaneously accompanied by coagulopathy and hyperinflammation at the onset. It is not known what effects cytokines have on ED and coagulopathy in these patients. Therefore, the purposes of this study are to explore the clinical differences between APL and other types of AML, the link between cytokines and coagulopathy in newly diagnosed APL, and their roles in the ED for APL.MethodsThis study retrospectively collected the information of 496 adult patients with AML (age ≥14 years at admission) newly diagnosed in the First People's Hospital of Yunnan Province between January 2017 to February 2022, including 115 APL patients. The difference of clinical manifestations between two groups [APL and AML (non-APL)] was statistically analyzed. Then, the factors affecting ED in APL patients were screened, and the possible pathways of their influence on ED were further analyzed.ResultsThe results indicate APL at the onset have a younger age and higher incidence of ED and DIC than other types of AML. Intracranial hemorrhage (ICH), age, and PLT count are found to be independent factors for ED in newly APL, among which ICH is the main cause of ED, accounting for 61.54% (8/13). The levels of cytokines in newly APL are generally higher than that in AML (non-APL), and those in the group of ED for APL were widely more than the control group. IL-17A and TNF-β are directly related to the ED in newly APL, especially IL-17A, which also affects ICH in these patients. Moreover, the increase of IL-17A and TNF-β cause the prolongation of PT in APL patients, which reflected the exogenous coagulation pathway. However, they have no effect on APTT prolongation and FIB reduction. Thus, it is speculated that IL-17A leads to early cerebral hemorrhage death in newly APL by inducing tissue factor (TF) overexpression to initiate exogenous coagulation and further leading to excessive depletion of clotting factors and prolongation of PT.ConclusionsIn conclusion, compared with other types of AML, APL patients have a younger age of onset and high inflammatory state, and are more likely to develop into DIC and die early. Age, and PLT count at diagnosis are independent factors for ED of APL, especially ICH. IL-17A is confirmed to be an independent risk factor for ED and ICH of newly APL. Hence, IL-17A may serve as a predictor of ED in newly diagnosed APL patients, and controlling its expression probably reduce ED in these patients.
Project description:Genome organization plays a pivotal role in transcription, but how transcription factors (TFs) rewire the structure of the genome to initiate and maintain the programs that lead to oncogenic transformation remains poorly understood. Acute promyelocytic leukemia (APL) is a fatal subtype of leukemia driven by a chromosomal translocation between the promyelocytic leukemia (PML) and retinoic acid receptor α (RARα) genes. We used primary hematopoietic stem and progenitor cells (HSPCs) and leukemic blasts that express the fusion protein PML-RARα as a paradigm to temporally dissect the dynamic changes in the epigenome, transcriptome, and genome architecture induced during oncogenic transformation. We found that PML-RARα initiates a continuum of topologic alterations, including switches from A to B compartments, transcriptional repression, loss of active histone marks, and gain of repressive histone marks. Our multiomics-integrated analysis identifies Klf4 as an early down-regulated gene in PML-RARα-driven leukemogenesis. Furthermore, we characterized the dynamic alterations in the Klf4 cis-regulatory network during APL progression and demonstrated that ectopic Klf4 overexpression can suppress self-renewal and reverse the differentiation block induced by PML-RARα. Our study provides a comprehensive in vivo temporal dissection of the epigenomic and topological reprogramming induced by an oncogenic TF and illustrates how topological architecture can be used to identify new drivers of malignant transformation.
Project description:The use of imatinib, second and third generation ABL tyrosine kinase inhibitors (TKI) (i.e. dasatinib, nilotinib, bosutinib and ponatinib) made CML a clinically manageable and, in a small percentage of cases, a cured disease. TKI therapy also turned CML blastic transformation into a rare event; however, disease progression still occurs in those patients who are refractory, not compliant with TKI therapy or develop resistance to multiple TKIs. In the past few years, it became clear that the BCRABL1 oncogene does not operate alone to drive disease emergence, maintenance and progression. Indeed, it seems that bone marrow (BM) microenvironment-generated signals and cell autonomous BCRABL1 kinase-independent genetic and epigenetic alterations all contribute to: i. persistence of a quiescent leukemic stem cell (LSC) reservoir, ii. innate or acquired resistance to TKIs, and iii. progression into the fatal blast crisis stage. Herein, we review the intricate leukemic network in which aberrant, but finely tuned, survival, mitogenic and self-renewal signals are generated by leukemic progenitors, stromal cells, immune cells and metabolic microenvironmental conditions (e.g. hypoxia) to promote LSC maintenance and blastic transformation.
Project description:BackgroundFindings from clinical trials and population-based studies have differed with regard to whether mortality within 30 days of diagnosis (early death) of acute promyelocytic leukemia (APL) has decreased in the era of all-trans retinoic acid and anthracycline-based chemotherapy.MethodsUsing data from the California Cancer Registry, the authors investigated 7-day and 30-day mortality and survival in 772 patients who were aged birth to 39 years when they were diagnosed with APL during 1988 to 2011. Logistic regression and Cox proportional models were used to examine the association of early death and survival, respectively, with sociodemographic and clinical factors.ResultsThe overall 30-day mortality decreased significantly over time, from 26% (1988-1995) to 14% (2004-2011) (P =.004). On multivariable analysis, the odds of 30-day mortality were 3 times as high during 1988 through 1995 than 2004 through 2011 (P =.001). However, 7-day mortality did not improve over time (P =.229). When patients who died within 7 days of diagnosis were excluded, the 30-day mortality during 1996 to 2011 was 3% to 8%, which is similar to levels reported in clinical trials. Higher early death and lower survival were associated with a lack of health insurance (1996-2011) (early death odds ratio, 2.67; P =.031) and Hispanic race/ethnicity (early death odds ratio, 2.13; P =.014). Early death was not found to be associated with age, sex, socioeconomic status, or hospital type. Black patients also experienced worse survival.ConclusionsThe findings of the current study revealed a decreased 30-day mortality during the all-trans retinoic acid era, but 7-day mortality remained high. Efforts to achieve equal outcomes in young patients with APL should focus on improving access to effective treatment, mainly among uninsured patients and those of Hispanic and black race/ethnicity.
Project description:BackgroundEarly death remains a major factor in survival in APL. We aimed to analyze the risk factors for differentiation syndrome and early death in acute promyelocytic leukemia (APL).MethodsThe clinical data of APL patients who were newly diagnosed at Mianyang Central Hospital from January 2013 to January 2022 were retrospectively analyzed.ResultsEighty-six newly diagnosed APL patients (37 males and 49 females) were included in this study. The median age was 46 (17-75) years. Sixty-one patients (70.9%) had low/intermediate-risk APL, and 25 patients (29.1%) had high-risk APL. The incidence of differentiation syndrome (DS) was 62.4%. The multivariate analysis showed that a peak white blood cell (WBC) count ≥16 × 10^9/L was an independent risk factor (OR = 11.000, 95% CI: 2.830-42.756, P = 0.001) for DS in all APL patients, while a WBC count ≥10 × 10^9/L on Day 5 was an independent risk factor for DS in low-intermediate risk APL patients (OR = 9.114, 95% CI: 2.384-34.849, P = 0.001). There were 31 patients (36.5%) with mild DS and 22 patients (25.9%) with severe DS. The multivariate analysis showed that WBC count ≥23 × 10^9/L at chemotherapy was an independent risk factor for severe DS (OR = 10.500, 95% CI: 2.344-47.034, P = 0.002). The rate of early death (ED) was 24.4% (21/86). The multivariate analysis showed that male gender (OR = 7.578,95% CI:1.136-50.551, P = 0.036), HGB < 65 g/L (OR = 16.271,95% CI:2.012-131.594, P = 0.009) and WBC count ≥7 × 10^9/L on Day 3(OR = 23.359,95% CI:1.825-298.959, P = 0.015) were independent risk factors for ED. The WBC count at diagnosis, WBC count on Day 3 and WBC count on Day 5 had moderate positive correlations with tumor necrosis factor-α (TNF-α) at diagnosis, and the correlation coefficients were 0.648 (P = 0.012), 0.615 (P = 0.033), and 0.609 (P = 0.035), respectively. The WBC count had no correlation with IL-6.ConclusionDuring induction treatment, cytotoxic chemotherapy may need to be initiated to reduce the risk of DS for APL patients with a low-intermediate risk WBC count ≥10 × 10^9/L on Day 5 or for all patients with a peak WBC count ≥16 × 10^9/L. Patients with WBC > 7 × 10^9/L on Day 3 have a higher risk of ED. Leukocyte proliferation is associated with TNF-α rather than IL-6, and TNF-α may be a potential biomarker for predicting ED.
Project description:During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.
Project description:We report that interferon (IFN) α treatment at short and long periods increases the global cellular SUMOylation and requires the presence of the SUMO E3 ligase promyelocytic leukemia protein (PML), the organizer of PML nuclear bodies (NBs). Several PML isoforms (PMLI-PMLVII) derived from a single PML gene by alternative splicing, share the same N-terminal region but differ in their C-terminal sequences. Introducing each of the human PML isoform in PML-negative cells revealed that enhanced SUMOylation in response to IFN is orchestrated by PMLIII and PMLIV. Large-scale proteomics experiments enabled the identification of 558 SUMO sites on 389 proteins, of which 172 sites showed differential regulation upon IFNα stimulation, including K49 from UBC9, the sole SUMO E2 protein. Furthermore, IFNα induces PML-dependent UBC9 transfer to the nuclear matrix where it colocalizes with PML within the NBs and enhances cellular SUMOylation levels. Our results demonstrate that SUMOylated UBC9 and PML are key players for IFN-increased cellular SUMOylation.
Project description:Treatment of chronic myeloid leukemia (CML) with the tyrosine kinase inhibitors (TKIs) imatinib mesylate and nilotinib represents a successful application of molecularly targeted anticancer therapy. However, the effect of TKIs on leukemic stem cells remains incompletely understood. On the basis of a statistical modeling approach that used the 10-year imatinib mesylate treatment response of patients with CML and a patient cohort receiving first-line nilotinib therapy, we found that successful long-term therapy results in a triphasic exponential decline of BCR-ABL1 transcripts in many patients. Within our framework, the first slope of -0.052 ± 0.018 (imatinib mesylate) and -0.042 ± 0.015 (nilotinib) per day represents the turnover rate of leukemic differentiated cells, whereas the second slope of -0.0057 ± 0.0038 (imatinib mesylate) and -0.0019 ± 0.0013 (nilotinib) per day represents the turnover rate of leukemic progenitor cells. The third slope allows an inference of the behavior of immature leukemic cells, potentially stem cells. This third slope is negative in most patients, positive in others, and not observable in some patients. This variability in response may be because of insufficient follow-up, missing data, disease heterogeneity, inconsistent compliance to drug, or acquired resistance. Our approach suggests that long-term TKI therapy may reduce the abundance of leukemic stem cells in some patients.
Project description:Background: Previous studies have reported that genes highly expressed in leukemic stem cells (LSC) may dictate the survival probability of patients and expression-based cellular deconvolution may be informative in forecasting prognosis. However, whether the prognosis of acute myeloid leukemia (AML) can be predicted using gene expression and deconvoluted cellular abundances is debatable. Methods: Nine different cell-type abundances of a training set composed of the AML samples of 422 patients, were used to build a model for predicting prognosis by least absolute shrinkage and selection operator Cox regression. This model was validated in two different validation sets, TCGA-LAML and Beat AML (n = 179 and 451, respectively). Results: We introduce a new prognosis predicting model for AML called the LSC activity (LSCA) score, which incorporates the abundance of 5 cell types, granulocyte-monocyte progenitors, common myeloid progenitors, CD45RA + cells, megakaryocyte-erythrocyte progenitors, and multipotent progenitors. Overall survival probabilities between the high and low LSCA score groups were significantly different in TCGA-LAML and Beat AML cohorts (log-rank p-value = 3.3×10-4 and 4.3×10-3, respectively). Also, multivariate Cox regression analysis on these two validation sets shows that LSCA score is independent prognostic factor when considering age, sex, and cytogenetic risk (hazard ratio, HR = 2.17; 95% CI 1.40-3.34; p < 0.001 and HR = 1.20; 95% CI 1.02-1.43; p < 0.03, respectively). The performance of the LSCA score was comparable to other prognostic models, LSC17, APS, and CTC scores, as indicated by the area under the curve. Gene set variation analysis with six LSC-related functional gene sets indicated that high and low LSCA scores are associated with upregulated and downregulated genes in LSCs. Conclusion: We have developed a new prognosis prediction scoring system for AML patients, the LSCA score, which uses deconvoluted cell-type abundance only.