Project description:BackgroundLong noncoding RNAs (lncRNAs) have emerged to have irreplaceable roles in the epigenetic regulation of cancer progression, but their biological functions in colorectal cancer (CRC) remain unclear.MethodsLncRNA expression profiles in CRC tissue and their normal counterpart were explored. Through gain and loss of function approaches, the role of lncRNA PTTG3P was validated in relevant CRC cells and subcutaneous tumor model. The correlations of PTTG3P expression with clinical outcomes were assessed.ResultsPTTG3P was upregulated in CRC tissues and was closely correlated with unsatisfactory prognosis. PTTG3P facilitated glycolysis and proliferation, and the transcriptional regulator YAP1 was necessary for PTTG3P-induced proliferation. Mechanistically, the N6-methyladenosine (m6A) subunit METTL3 increased PTTG3P expression by influencing its stability, while insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2) could identify PTTG3P m6A methylation status and bind to it. IGF2BP2 knockdown partly recovered PTTG3P expression induced by METTL3, indicating that METTL3-regulated PTTG3P expression depended on the presence of IGF2BP2. Finally, rescue assays validated the critical role of the METTL3/PTTG3P/YAP1 axis on CRC proliferation.ConclusionsPTTG3P is an independent prognostic biomarker for CRC. The METTL3/PTTG3P/YAP1 axis promotes the progression of CRC and is a promising treatment target.
Project description:Circular RNAs (circRNAs) are prevalent in eukaryotic cells and viral genomes. Mammalian cells possess innate immunity to detect foreign circRNAs, but the molecular basis of self versus foreign identity in circRNA immunity is unknown. Here, we show that N6-methyladenosine (m6A) RNA modification on human circRNAs inhibits innate immunity. Foreign circRNAs are potent adjuvants to induce antigen-specific T cell activation, antibody production, and anti-tumor immunity in vivo, and m6A modification abrogates immune gene activation and adjuvant activity. m6A reader YTHDF2 sequesters m6A-circRNA and is essential for suppression of innate immunity. Unmodified circRNA, but not m6A-modified circRNA, directly activates RNA pattern recognition receptor RIG-I in the presence of lysine-63-linked polyubiquitin chain to cause filamentation of the adaptor protein MAVS and activation of the downstream transcription factor IRF3. CircRNA immunity has considerable parallel to prokaryotic DNA restriction modification system that transforms nucleic acid chemical modification into organismal innate immunity.
Project description:BackgroundN6-methyladenosine (m6A) modification, the most abundant internal methylation of eukaryotic RNA transcripts, is critically implicated in RNA processing. As the largest known component in the m6A methyltransferase complex, KIAA1429 plays a vital role in m6A methylation. However, its function and mechanism in hepatocellular carcinoma (HCC) remain poorly defined.MethodsQuantitative PCR, western blot and immunohistochemistry were used to measure the expression of KIAA1429 in HCC. The effects of KIAA1429 on the malignant phenotypes of hepatoma cells were examined in vitro and in vivo. MeRIP-seq, RIP-seq and RNA-seq were performed to identify the target genes of KIAA1429.ResultsKIAA1429 was considerably upregulated in HCC tissues. High expression of KIAA1429 was associated with poor prognosis among HCC patients. Silencing KIAA1429 suppressed cell proliferation and metastasis in vitro and in vivo. GATA3 was identified as the direct downstream target of KIAA1429-mediated m6A modification. KIAA1429 induced m6A methylation on the 3' UTR of GATA3 pre-mRNA, leading to the separation of the RNA-binding protein HuR and the degradation of GATA3 pre-mRNA. Strikingly, a long noncoding RNA (lncRNA) GATA3-AS, transcribed from the antisense strand of the GATA3 gene, functioned as a cis-acting element for the preferential interaction of KIAA1429 with GATA3 pre-mRNA. Accordingly, we found that the tumor growth and metastasis driven by KIAA1429 or GATA3-AS were mediated by GATA3.ConclusionOur study proposed a complex KIAA1429-GATA3 regulatory model based on m6A modification and provided insights into the epi-transcriptomic dysregulation in hepatocarcinogenesis and metastasis.
Project description:In this study, we aimed to systematically profile global RNA N6-methyladenosine (m6A) modification patterns in a mouse model of diabetic cardiomyopathy (DCM). Patterns of m6A in DCM and normal hearts were analyzed via m6A-specific methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-seq) and RNA sequencing (RNA-seq). m6A-related mRNAs were validated by quantitative real-time PCR analysis of input and m6A immunoprecipitated RNA samples from DCM and normal hearts. A total of 973 new m6A peaks were detected in DCM samples and 984 differentially methylated sites were selected for further study, including 295 hypermethylated and 689 hypomethylated m6A sites (fold change (FC) > 1.5, P < 0.05). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Pathway analyses indicated that unique m6A-modified transcripts in DCM were closely linked to cardiac fibrosis, myocardial hypertrophy, and myocardial energy metabolism. Total m6A levels were higher in DCM, while levels of the fat mass and obesity-associated (FTO) protein were downregulated. Overexpression of FTO in DCM model mice improved cardiac function by reducing myocardial fibrosis and myocyte hypertrophy. Overall, m6A modification patterns were altered in DCM, and modification of epitranscriptomic processes, such as m6A, is a potentially interesting therapeutic approach.
Project description:Epitranscriptomic profiling of human LECs of DC patients comparing normal control LECs. Goal was todetermine the potential functions and mechanism of N6-methyladenosine (m6A) abnormality of RNAs in human lens epithelium cell (HLEC) lesions in diabetic cataract (DC).
Project description:Background and aimsEpitranscriptomic modification of RNA has emerged as the most prevalent form of regulation of gene expression that affects development, differentiation, metabolism, viral infections, and most notably cancer. We have previously shown that hepatitis B virus (HBV) transcripts are modified by N6 methyladenosine (m6 A) addition. HBV also affects m6 A modification of several host RNAs, including phosphatase and tensin homolog (PTEN), a well-known tumor suppressor. PTEN plays a critical role in antiviral innate immunity and the development of hepatocellular carcinoma (HCC). Reports have shown that PTEN controlled interferon regulatory factor 3 (IRF-3) nuclear localization by negative phosphorylation of IRF-3 at Ser97, and PTEN reduced carcinogenesis by inhibiting the phosphatidylinositol-3-kinase (PI3K)/AKT pathway.Approach and resultsHere, we show that HBV significantly increases the m6 A modification of PTEN RNA, which contributes to its instability with a corresponding decrease in PTEN protein levels. This is reversed in cells in which the expression of m6 A methyltransferases is silenced. PTEN expression directly increases activated IRF-3 nuclear import and subsequent interferon synthesis. In the absence of PTEN, IRF-3 dephosphorylation at the Ser97 site is decreased and interferon synthesis is crippled. In chronic HBV patient biopsy samples, m6 A-modified PTEN mRNA levels were uniformly up-regulated with a concomitant decrease of PTEN mRNA levels. HBV gene expression also activated the PI3K/AKT pathway by regulating PTEN mRNA stability in HCC cell lines.ConclusionsThe m6 A epitranscriptomic regulation of PTEN by HBV affects innate immunity by inhibiting IRF-3 nuclear import and the development of HCC by activating the PI3K/AKT pathway. Our studies collectively provide new insights into the mechanisms of HBV-directed immune evasion and HBV-associated hepatocarcinogenesis through m6 A modification of the host PTEN mRNAs.
Project description:N6-methyladenosine (m6A) modification is a common RNA modification in the central nervous system and has been linked to various neurological disorders, including Alzheimer's disease (AD). However, the dynamic of mRNA m6A modification and m6A enzymes during the development of AD are not well understood. Therefore, this study examined the expression profiles of m6A and its enzymes in the development of AD. The results showed that changes in the expression levels of m6A regulatory factors occur in the early stages of AD, indicating a potential role for m6A modification in the onset of the disease. Additionally, the analysis of mRNA m6A expression profiles using m6A-seq revealed significant differences in m6A modification between AD and control brains. The genes with differential methylation were found to be enriched in GO and KEGG terms related to processes such as inflammation response, immune system processes. And the differently expressed genes (DEGs) are negatively lryassociated with genes involved in microglia hemostasis, but positively associated with genes related to "disease-associated microglia" (DAM) associated genes. These findings suggest that dysregulation of mRNA m6A modification may contribute to the development of AD by affecting the function and gene expression of microglia.
Project description:N6-methyladenosine (m6A) constitutes one of the most abundant internal RNA modifications and is critical for RNA metabolism and function. It has been previously reported that viral RNA contains internal m6A modifications; however, only recently the function of m6A modification in viral RNAs has been elucidated during infections of HIV, hepatitis C virus and Zika virus. In the present study, we found that enterovirus 71 (EV71) RNA undergoes m6A modification during viral infection, which alters the expression and localization of the methyltransferase and demethylase of m6A, and its binding proteins. Moreover, knockdown of m6A methyltransferase resulted in decreased EV71 replication, whereas knockdown of the demethylase had the opposite effect. Further study showed that the m6A binding proteins also participate in the regulation of viral replication. In particular, two m6A modification sites were identified in the viral genome, of which mutations resulted in decreased virus replication, suggesting that m6A modification plays an important role in EV71 replication. Notably, we found that METTL3 interacted with viral RNA-dependent RNA polymerase 3D and induced enhanced sumoylation and ubiquitination of the 3D polymerase that boosted viral replication. Taken together, our findings demonstrated that the host m6A modification complex interacts with viral proteins to modulate EV71 replication.
Project description:Since the breakthrough discoveries of DNA and histone modifications, the field of RNA modifications has gained increasing interest in the scientific community. The discovery of N6-methyladenosine (m6A), a predominantly internal epigenetic modification in eukaryotes mRNA, heralded the creation of the field of epi-transcriptomics. This post-transcriptional RNA modification is dynamic and reversible, and is regulated by methylases, demethylases and proteins that preferentially recognize m6A modifications. Altered m6A levels affect RNA processing, degradation and translation, thereby disrupting gene expression and key cellular processes, ultimately resulting in tumor initiation and progression. Furthermore, inhibitors and regulators of m6A-related factors have been explored as therapeutic approaches for treating cancer. In the present review, the mechanisms of m6A RNA modification, the clinicopathological relevance of m6A alterations, the type and frequency of alterations and the multiple functions it regulates in different types of cancer are discussed.
Project description:The methylation of N6-methyladenosine (m6A) involves writers, erasers, and readers, acting synergistically in posttranscriptional regulation. These processes influence various biological processes, including plant floral transition. However, the specific role of m6A modifications in photoperiod sensitivity in cotton (Gossypium hirsutum) remains obscure. To elucidate this, in this study, we conducted transcriptome-wide m6A sequencing during critical flowering transition stages in the photoperiod-sensitive wild G. hirsutum var. yucatanense (yucatanense) and the photoperiod-insensitive cultivated cotton G. hirsutum acc. TM-1 (TM-1). Our results revealed significant variations in m6A methylation of 2 cotton varieties, with yucatanense exhibiting elevated m6A modification levels compared with TM-1 under long-day conditions. Notably, distinct m6A peaks between TM-1 and yucatanense correlated significantly with photoperiod sensitivity. Moreover, our study highlighted the role of the demethylase G. hirsutum ALKB homolog 5 (GhALKBH5) in modulating m6A modification levels. Silencing GhALKBH5 led to a decreased mRNA level of key photoperiodic flowering genes (GhADO3, GhAGL24, and GhFT1), resulting in delayed bud emergence and flowering. Reverse transcription quantitative PCR analyses confirmed that silencing GhADO3 and GhAGL24 significantly downregulated the expression of the floral integrator GhFT1. Collectively, our findings unveiled a transcriptional regulatory mechanism in which GhALKBH5-mediated m6A demethylation of crucial photoperiodic flowering transcripts modulated photoperiod sensitivity in cotton.