Project description:Endolysins comprise a novel class of selective antibacterials refractory to develop resistances. The Cpl-7 endolysin, encoded by the Streptococcus pneumoniae bacteriophage Cp-7, consists of a catalytic module (CM) with muramidase activity and a cell wall-binding module (CWBM) made of three fully conserved CW_7 repeats essential for activity. Firstly identified in the Cpl-7 endolysin, CW_7 motifs are also present in a great variety of cell wall hydrolases encoded, among others, by human and live-stock pathogens. However, the nature of CW_7 receptors on the bacterial envelope remains unknown. In the present study, the structural stability of Cpl-7 and the target recognized by CW_7 repeats, relevant for exploitation of Cpl-7 as antimicrobial, have been analyzed, and transitions from the CM and the CWBM assigned, using circular dichroism and differential scanning calorimetry. Cpl-7 stability is maximum around 6.0-6.5, near the optimal pH for activity. Above pH 8.0 the CM becomes extremely unstable, probably due to deprotonation of the N-terminal amino-group, whereas the CWBM is rather insensitive to pH variation and its structural stabilization by GlcNAc-MurNAc-l-Ala-d-isoGln points to the cell wall muropeptide as the cell wall target recognized by the CW_7 repeats. Denaturation data also revealed that Cpl-7 is organized into two essentially independent folding units, which will facilitate the recombination of the CM and the CWBM with other catalytic domains and/or cell wall-binding motifs to yield new tailored chimeric lysins with higher bactericidal activities or new pathogen specificities.
Project description:Streptococcus pneumoniae remains a deadly disease in small children and the elderly even though conjugate and polysaccharide vaccines based on isolated capsular polysaccharides (CPS) are successful. The most common serotypes that cause infection are used in vaccines around the world, but differences in geographic and demographic serotype distribution compromises protection by leading vaccines. The medicinal chemistry approach to glycoconjugate vaccine development has helped to improve the stability and immunogenicity of synthetic vaccine candidates for several serotypes leading to the induction of higher levels of specific protective antibodies. Here, we show that marketed CPS-based glycoconjugate vaccines can be improved by adding synthetic glycoconjugates representing serotypes that are not covered by existing vaccines. Combination (coformulation) of synthetic glycoconjugates with the licensed vaccines Prevnar13 (13-valent) and Synflorix (10-valent) yields improved 15- and 13-valent conjugate vaccines, respectively, in rabbits. A pentavalent semisynthetic glycoconjugate vaccine containing five serotype antigens (sPCV5) elicits antibodies with strong in vitro opsonophagocytic activity. This study illustrates that synthetic oligosaccharides can be used in coformulation with both isolated polysaccharide glycoconjugates to expand protection from existing vaccines and each other to produce precisely defined multivalent conjugated vaccines.
Project description:There is a pressing need to develop novel antibacterial agents given the widespread antibiotic resistance among pathogenic bacteria and the low specificity of the drugs available. Endolysins are antibacterial proteins that are produced by bacteriophage-infected cells to digest the bacterial cell wall for phage progeny release at the end of the lytic cycle. These highly efficient enzymes show a considerable degree of specificity for the target bacterium of the phage. Furthermore, the emergence of resistance against endolysins appears to be rare as the enzymes have evolved to target molecules in the cell wall that are essential for bacterial viability. Taken together, these factors make recombinant endolysins promising novel antibacterial agents. The chloroplast of the green unicellular alga Chlamydomonas reinhardtii represents an attractive platform for production of therapeutic proteins in general, not least due to the availability of established techniques for foreign gene expression, a lack of endotoxins or potentially infectious agents in the algal host, and low cost of cultivation. The chloroplast is particularly well suited to the production of endolysins as it mimics the native bacterial expression environment of these proteins while being devoid of their cell wall target. In this study, the endolysins Cpl-1 and Pal, specific to the major human pathogen Streptococcus pneumoniae, were produced in the C. reinhardtii chloroplast. The antibacterial activity of cell lysates and the isolated endolysins was demonstrated against different serotypes of S. pneumoniae, including clinical isolates and total recombinant protein yield was quantified at ~1.3 mg/g algal dry weight.
Project description:Despite the use of pneumococcal conjugate vaccines, the number of infections related to Streptococcus pneumoniae continues to be alarming. Herein, we identified, characterized the MSlys endolysin encoded in the phage MS1. We further tested its antimicrobial efficacy against planktonic and biofilm cells, assessing the culturability of cells and biofilm structure by scanning electron microscopy, and confocal laser scanning microscopy. The modular MSlys endolysin consists of an amidase catalytic domain and a choline-binding domain. MSlys is active against isolates of children with otitis media, and conditions close to those found in the middle ear. Treatment with MSlys (2 h, 4 μM) reduced planktonic cultures by 3.5 log10 CFU/mL, and 24- and 48-h-old biofilms by 1.5 and 1.8 log10 CFU/mL, respectively. Imaging of the biofilms showed thinner and damaged structures compared to control samples. The recombinantly expressed MSlys may be a suitable candidate for treating pneumococcal infections, including otitis media.
Project description:Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics in order to defeat multidrug-resistant bacteria such as Streptococcus pneumoniae. In this study, thirteen antimicrobial peptides were designed based on two natural peptides indolicidin and ranalexin. Our results revealed that four hybrid peptides RN7-IN10, RN7-IN9, RN7-IN8, and RN7-IN6 possess potent antibacterial activity against 30 pneumococcal clinical isolates (MIC 7.81-15.62µg/ml). These four hybrid peptides also showed broad spectrum antibacterial activity (7.81µg/ml) against S. aureus, methicillin resistant S. aureus (MRSA), and E. coli. Furthermore, the time killing assay results showed that the hybrid peptides were able to eliminate S. pneumoniae within less than one hour which is faster than the standard drugs erythromycin and ceftriaxone. The cytotoxic effects of peptides were tested against human erythrocytes, WRL-68 normal liver cell line, and NL-20 normal lung cell line. The results revealed that none of the thirteen peptides have cytotoxic or hemolytic effects at their MIC values. The in silico molecular docking study was carried out to investigate the binding properties of peptides with three pneumococcal virulent targets by Autodock Vina. RN7IN6 showed a strong affinity to target proteins; autolysin, pneumolysin, and pneumococcal surface protein A (PspA) based on rigid docking studies. Our results suggest that the hybrid peptides could be suitable candidates for antibacterial drug development.
Project description:Streptococcusbovis (S.bovis) is one of the critical initiators of acute acidosis in ruminants. Therefore, we aimed to develop and characterize the endolysin LyJH307, which can lyse ruminal S.bovis. We tested the bactericidal activity of recombinant LyJH307 against S. bovis JB1 under a range of pH, temperature, NaCl, and metal ion concentrations. In silico analyses showed that LyJH307 has a modular design with a distinct, enzymatically active domain of the NLPC/P60 superfamily at the N-terminal and a cell wall binding domain of the Zoocin A target recognition domain (Zoocin A_TRD) superfamily at the C-terminal. The lytic activity of LyJH307 against S.bovis JB1 was the highest at pH 5.5, and relatively higher under acidic, than under alkaline conditions. LyJH307 activity was also the highest at 39 °C, but was maintained between 25°C and 55°C. LyJH307 bactericidal action was retained under 0-500 mM NaCl. While the activity of LyJH307 significantly decreased on treatment with ethylenediaminetetraacetic acid (EDTA), it was only restored with supplementation of 10 mM Ca2+. Analyses of antimicrobial spectra showed that LyJH307 lysed Lancefield groups D (S.bovis group and Enterococcus faecalis) and H (S.sanguinis) bacteria. Thus, LyJH307 might help to prevent acute ruminal acidosis.
Project description:Bacillus cereus is an opportunistic human pathogen responsible for food poisoning and other, nongastrointestinal infections. Due to the emergence of multidrug-resistant B. cereus strains, the demand for alternative therapeutic options is increasing. To address these problems, we isolated and characterized a Siphoviridae virulent phage, PBC1, and its lytic enzymes. PBC1 showed a very narrow host range, infecting only 1 of 22 B. cereus strains. Phylogenetic analysis based on the major capsid protein revealed that PBC1 is more closely related to the Bacillus clarkii phage BCJA1c and phages of lactic acid bacteria than to the phages infecting B. cereus. Whole-genome comparison showed that the late-gene region, including the terminase gene, structural genes, and holin gene of PBC1, is similar to that from B. cereus temperate phage 250, whereas their endolysins are different. Compared to the extreme host specificity of PBC1, its endolysin, LysPBC1, showed a much broader lytic spectrum, albeit limited to the genus Bacillus. The catalytic domain of LysPBC1 when expressed alone also showed Bacillus-specific lytic activity, which was lower against the B. cereus group but higher against the Bacillus subtilis group than the full-length protein. Taken together, these results suggest that the virulent phage PBC1 is a useful component of a phage cocktail to control B. cereus, even with its exceptionally narrow host range, as it can kill a strain of B. cereus that is not killed by other phages, and that LysPBC1 is an alternative biocontrol agent against B. cereus.
Project description:The identification of immunogenic glycotopes that render glycoconjugate vaccines protective is key to improving vaccine efficacy. Synthetic oligosaccharides are an attractive alternative to the heterogeneous preparations of purified polysaccharides that most marketed glycoconjugate vaccines are based on. To investigate the potency of semi-synthetic glycoconjugates, we chose the least-efficient serotype in the current pneumococcal conjugate vaccine Prevnar 13, Streptococcus pneumoniae serotype 3 (ST3). Glycan arrays containing synthetic ST3 repeating unit oligosaccharides were used to screen a human reference serum for antibodies and to define the recognition site of two ST3-specific protective monoclonal antibodies. The glycan array screens identified a tetrasaccharide that was selected for in-depth immunological evaluation. The tetrasaccharide-CRM197 carrier protein conjugate elicited protective immunity as evidenced by opsonophagocytosis assays and protection against pneumonia caused by ST3 in mice. Formulation of the defined protective lead candidate glycotope has to be further evaluated to elicit optimal long-term immunity.
Project description:Enterococcus faecalis is an opportunistic pathogen that causes illnesses ranging from urinary tract infections to sepsis in humans and animals. However, the overuse of antibiotics has increased rates of drug resistance among E. faecalis isolates. Bacteriophages and their derivatives have recently been identified as good candidates for the treatment of drug-resistant bacterial infections. Here, we isolated a virulent E. faecalis phage, PHB08, using the double-layer plate method. The bioactivity of the phage was determined via one-step growth curve testing and bacterial killing assays, and whole-genome sequencing was performed using the Illumina HiSeq platform. In addition, protein expression and antibiofilm assays were performed to investigate the activity of the phage lysin. Results showed that PHB08 has a 55,244-bp linear double-stranded DNA genome encoding 91 putative coding sequences. PHB08 inhibited the growth of host strain EF3964 at 37 °C in tryptic soy broth (TSB) medium, while in vegetable models, PHB08 caused a 4.69-log decrease in viable E. faecalis cells after 24 h. Both PHB08 and its endolysin lys08 showed antibiofilm activity against E. faecalis biofilms, which was enhanced by Mn2+ ions. Thus, virulent phage PHB08 and endolysin lys08 may be good candidates for reducing and/or eradicating E. faecalis infections.
Project description:Pseudomonas syringae pv. actinidiae (Psa) is a phytopathogen that causes canker in kiwifruit. Few conventional control methods are effective against this bacterium. Therefore, alternative approaches, such as phage therapy are warranted. In this study, a lytic bacteriophage (PN09) of Psa was isolated from surface water collected from a river in Hangzhou, China in 2019. Morphologically, PN09 was classified into the Myoviridae family, and could lyse all 29 Psa biovar 3 strains. The optimal temperature and pH ranges for PN09 activity were determined as 25 to 35 ∘C and 6.0 to 9.0, respectively. The complete genome of PN09 was found to be composed of a linear 99,229 bp double-stranded DNA genome with a GC content of 48.16%. The PN09 endolysin (LysPN09) was expressed in vitro and characterized. LysPN09 was predicted to belong to the Muraidase superfamily domain and showed lytic activity against the outer-membrane-permeabilized Psa strains. The lytic activity of LysPN09 was optimal over temperature and pH ranges of 25 to 40 ∘C and 6.0 to 8.0, respectively. When recombinant endolysin LysPN09 was combined with EDTA, Psa strains were effectively damaged. All these characteristics demonstrate that the phage PN09 and its endolysin, LysPN09, are potential candidates for biocontrol of Psa in the kiwifruit industry.