Project description:Background: Preoperative prediction of postoperative pulmonary function after anatomical resection for lung cancer is essential to prevent long-term morbidity and mortality. Here, we compared the accuracy of hybrid single-photon emission computed tomography/computed tomography (SPECT/CT) with traditional anatomical and planar scintigraphy approaches in predicting postoperative pulmonary function in patients with impaired lung function. Methods: We analyzed the predicted postoperative pulmonary function in patients undergoing major anatomical lung resection, applying a segment counting approach, planar perfusion scintigraphy (PPS), and SPECT/CT-based lung function quantification. Results: In total, 120 patients were evaluated, of whom 82 were included in the study. Postoperative lung function tests were obtained in 21 of 82 patients. The preoperative SPECT/CT-based quantification yielded very accurate results compared to the actual postoperative FEV1 and DLCO values. The linear regression analysis showed that the SPECT/CT-based analysis predicted postoperative FEV1 (%) and DLCO values more accurately than the segment counting approach or PPS. Accordingly, 58/82 patients would qualify for anatomical lung resection according to the SPECT-based quantification, 56/82 qualified according to the PPS (Mende), and only 47/82 qualified according to the segment counting method. Moreover, we noted that the SPECT-predicted FEV1 values were very close to the actual postoperative values in emphysema patients, and selected patients even showed improved lung function after surgery. Conclusions: Anatomically driven methods such as SPECT/CT yielded a very accurate prediction of the postoperative pulmonary function. Accordingly, applying SPECT/CT revealed more patients who would formally qualify for lung resection. We suggest SPECT/CT as the preferred method to evaluate eligibility for lung surgery in selected patients with impaired pulmonary reserve.
Project description:This study investigates agreement between ventilation and perfusion for lung cancer patients undergoing radiotherapy. Ventilation-perfusion scans of nineteen patients with stage III lung cancer from a prospective protocol were compared using voxel-wise Spearman correlation-coefficients. The presented results show in about 25% of patients, ventilation and perfusion exhibit lower agreement.
Project description:PurposeThe computed tomography (CT)-derived ventilation imaging methodology employs deformable image registration (DIR) to recover respiratory motion-induced volume changes from an inhale/exhale CT image pair, as a surrogate for ventilation. The Integrated Jacobian Formulation (IJF) and Mass Conserving Volume Change (MCVC) numerical methods for volume change estimation represent two classes of ventilation methods, namely transformation based and intensity (Hounsfield Unit) based, respectively. Both the IJF and MCVC methods utilize subregional volume change measurements that satisfy a specified uncertainty tolerance. In previous publications, the ventilation images resulting from this numerical strategy demonstrated robustness to DIR variations. However, the reduced measurement uncertainty comes at the expense of measurement resolution. The purpose of this study was to examine the spatial correlation between robust CT-ventilation images and single photon emission CT-ventilation (SPECT-V).MethodsPreviously described implementations of IJF and MCVC require the solution of a large scale, constrained linear least squares problem defined by a series of robust subregional volume change measurements. We introduce a simpler parameterized implementation that reduces the number of unknowns while increasing the number of data points in the resulting least squares problem. A parameter sweep of the measurement uncertainty tolerance, τ , was conducted using the 4DCT and SPECT-V images acquired for 15 non-small cell lung cancer patients prior to radiotherapy. For each test case, MCVC and IJF CT-ventilation images were created for 30 different uncertainty parameter values, uniformly sampled from the range 0.01,0.25 . Voxel-wise Spearman correlation between the SPECT-V and the resulting CT-ventilation images was computed.ResultsThe median correlations between MCVC and SPECT-V ranged from 0.20 to 0.48 across the parameter sweep, while the median correlations for IJF and SPECT-V ranged between 0.79 and 0.82. For the optimal IJF tolerance τ=0.07 , the IJF and SPECT-V correlations across all 15 test cases ranged between 0.12 and 0.90. For the optimal MCVC tolerance τ=0.03 , the MCVC and SPECT-V correlations across all 15 test cases ranged between -0.06 and 0.84.ConclusionThe reported correlations indicate that robust methods generate ventilation images that are spatially consistent with SPECT-V, with the transformation-based IJF method yielding higher correlations than those previously reported in the literature. For both methods, overall correlations were found to marginally vary for τ∈[0.03,0.15] , indicating that the clinical utility of both methods is robust to both uncertainty tolerance and DIR solution.
Project description:BackgroundLung resection remains the gold standard treatment for early stage lung cancer; prediction of postoperative lung function is a key selection criterion for surgery with the aim of determining risk of postoperative dyspnoea. We aimed to identify the different prediction techniques used, and compare their accuracy.MethodsA systematic review and meta-analysis sought to synthesise studies conducted that assess prediction of postoperative lung function up to 18/02/2018 (n = 135). PROBAST was used to assess risk of bias in studies, 17 studies were judged to be at low risk of bias.FindingsMeta-analysis revealed CT volume and density measurement to be the most accurate (mean difference 71 ml) and precise (standard deviation 207 ml) of the reported techniques used for predicting FEV1; evidence for predicting gas transfer was lacking.InterpretationThe evidence suggests using CT volume and density is the preferred technique in the prediction of postoperative FEV1. Further studies are required to ensure that the methods and thresholds we propose are linked to patient reported outcomes.FundingSalary support for NKO, RM, PN, BN, and AMT was provided by University Hospitals Birmingham NHS Foundation Trust.
Project description:PURPOSE:To derive lobar ventilation in patients with chronic obstructive pulmonary disease (COPD) using a rapid time-series hyperpolarized xenon-129 (HPX) magnetic resonance imaging (MRI) technique and compare this to ventilation/perfusion single-photon emission computed tomography (V/Q-SPECT), correlating the results with high-resolution computed tomography (CT) and pulmonary function tests (PFTs). MATERIALS AND METHODS:Twelve COPD subjects (GOLD stages I-IV) participated in this study and underwent HPX-MRI, V/Q-SPECT/CT, high-resolution CT, and PFTs. HPX-MRI was performed using a novel time-series spiral k-space sampling approach. Relative percentage ventilations were calculated for individual lobe for comparison to the relative SPECT lobar ventilation and perfusion. The absolute HPX-MRI percentage ventilation in each lobe was compared to the absolute CT percentage emphysema score calculated using a signal threshold method. Pearson's correlation and linear regression tests were performed to compare each imaging modality. RESULTS:Strong correlations were found between the relative lobar percentage ventilation with HPX-MRI and percentage ventilation SPECT (r = 0.644; p < 0.001) and percentage perfusion SPECT (r = 0.767; p < 0.001). The absolute CT percentage emphysema and HPX percentage ventilation correlation was also statistically significant (r = 0.695, p < 0.001). The whole lung HPX percentage ventilation correlated with the PFT measurements (FEV1 with r = - 0.886, p < 0.001*, and FEV1/FVC with r = - 0.861, p < 0.001*) better than the whole lung CT percentage emphysema score (FEV1 with r = - 0.635, p = 0.027; and FEV1/FVC with r = - 0.652, p = 0.021). CONCLUSION:Lobar ventilation with HPX-MRI showed a strong correlation with lobar ventilation and perfusion measurements derived from SPECT/CT, and is better than the emphysema score obtained with high-resolution CT. KEY POINTS:• The ventilation hyperpolarized xenon-129 MRI correlates well with ventilation and perfusion with SPECT/CT with the advantage of higher temporal and spatial resolution. • The hyperpolarized xenon-129 MRI correlates with the PFT measurements better than the high-resolution CT with the advantage of avoiding the use of ionizing radiation.
Project description:ObjectiveWe investigated the impact of radiological interstitial lung abnormalities on the postoperative pulmonary functions of patients with non-small cell lung cancer.MethodsA total of 1191 patients with clinical stage IA non-small cell lung cancer who underwent lung resections and pulmonary function tests ≥ 6 months postoperatively were retrospectively reviewed. Postoperative pulmonary function reduction rates were compared between patients with and without interstitial lung abnormalities and according to the radiological interstitial lung abnormality classifications. Surgical procedures were divided into wedge resection, 1-2 segment resection, and 3-5 segment resection groups.ResultsNo significant differences in postoperative pulmonary function reduction rates 6 months after wedge resection were observed between the interstitial lung abnormality [n = 202] and non-interstitial lung abnormality groups [n = 989] [vital capacity [VC]: 6.82% vs. 5.00%; forced expiratory volume in 1 s [FEV1]: 7.05% vs. 7.14%]. After anatomical resection, these values were significantly lower in the interstitial lung abnormality group than in the non-interstitial lung abnormality group [VC: 1-2 segments, 12.50% vs. 9.93%; 3-5 segments, 17.42% vs. 14.23%; FEV1: 1-2 segments: 13.36% vs. 10.27%; 3-5 segments: 17.36% vs. 14.39%]. No significant differences in postoperative pulmonary function reduction rates according to the radiological interstitial lung abnormality classifications were observed.ConclusionsThe presence of interstitial lung abnormalities had a minimal effect on postoperative pulmonary functions after wedge resections; however, pulmonary functions significantly worsened after segmentectomy or lobectomy, regardless of the radiological interstitial lung abnormality classification in early-stage non-small cell lung cancer.
Project description:PurposeTo compare the performance of 99mTc-FAPI-04 SPECT/CT and contrast-enhanced CT (CECT) in the detection of postoperative metastasis in patients with colorectal cancer (CRC).MethodsThe postoperative patients with CRC were consecutively recruited from January 2023 to June 2023, and the enrolled patients completed 99mTc-FAPI-04 SPECT/CT imaging and CECT examination within two weeks. Histopathological analysis and the follow-up results were used as the reference criteria. The location and number of metastatic sites and the detection accuracy between the two imaging methods were compared. The tumor-to-background ratio (TBR) of liver metastasis and lymph node metastasis in 99mTc-FAPI-04 SPECT/CT imaging were also calculated for comparison.ResultsIn total, 19 postoperative CRC patients, including 15 patients with metastasis, were included in this study. In the patient-based analysis, 99mTc-FAPI-04 SPECT/CT showed a significantly higher sensitivity for the detection of metastasis than CECT (93.3% vs. 80.0%, p = 0.038), but both techniques had the same specificity (100%, 4/4). For the lesion-based analysis, the detection rates of metastatic sites were 92.2% (47/51) and 72.5% (37/51) for 99mTc-FAPI-04 SPECT/CT and CECT, respectively, and the difference between them was statistically significant. In the diagnosis of liver metastasis and lymph node metastasis, 99mTc-FAPI-04 SPECT/CT both exceeded CECT. Additionally, the TBR in lymph node metastasis was higher than that in liver metastasis.ConclusionThe findings suggested that 99mTc-FAPI-04 SPECT/CT could detect metastasis more effectively than CECT, especially liver and lymph node metastases, in postoperative CRC patients.
Project description:Lung cancer has the highest mortality rate of any tissue-specific cancer in both men and women. Research continues to investigate novel drugs and therapies to mitigate poor treatment efficacy, but the lack of a good descriptive lung cancer animal model for preclinical drug evaluation remains an obstacle. Here we describe the development of an orthotopic lung cancer animal model which utilizes the human sodium iodide symporter gene (hNIS; SLC5A5) as an imaging reporter gene for the purpose of non-invasive, longitudinal tumor quantification. hNIS is a glycoprotein that naturally transports iodide (I-) into thyroid cells and has the ability to symport the radiotracer 99mTc-pertechnetate (99mTcO4-). A549 lung adenocarcinoma cells were genetically modified with plasmid or lentiviral vectors to express hNIS. Modified cells were implanted into athymic nude mice to develop two tumor models: a subcutaneous and an orthotopic xenograft tumor model. Tumor progression was longitudinally imaged using SPECT/CT and quantified by SPECT voxel analysis. hNIS expression in lung tumors was analyzed by quantitative real-time PCR. Additionally, hematoxylin and eosin staining and visual inspection of pulmonary tumors was performed. We observed that lentiviral transduction provided enhanced and stable hNIS expression in A549 cells. Furthermore, 99mTcO4- uptake and accumulation was observed within lung tumors allowing for imaging and quantification of tumor mass at two-time points. This study illustrates the development of an orthotopic lung cancer model that can be longitudinally imaged throughout the experimental timeline thus avoiding inter-animal variability and leading to a reduction in total animal numbers. Furthermore, our orthotopic lung cancer animal model is clinically relevant and the genetic modification of cells for SPECT/CT imaging can be translated to other tissue-specific tumor animal models.
Project description:PURPOSE:To apply a previously designed framework for predicting radiation pneumonitis by using pretreatment lung function heterogeneity metrics, anatomic dosimetry, and functional lung dosimetry derived from 2 imaging modalities within the same cohort. METHODS AND MATERIALS:Treatment planning computed tomography (CT) scans were co-registered with pretreatment [99mTc] macro-aggregated albumin perfusion single-photon positron emission tomography (SPECT)/CT scans and [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT scans of 28 patients who underwent definitive thoracic radiation. Clinical radiation pneumonitis was defined as grade ?2 (Common Terminology Criteria for Adverse Events, v. 4). Anatomic dosimetric parameters (mean lung dose [MLD], volume receiving ?20 Gy [V20]) were collected from treatment planning scans. Baseline functional lung heterogeneity parameters and functional lung dose-volume parameters were calculated from pretreatment SPECT/CT and FDG PET/CT scans. Functional heterogeneity parameters calculated over the tumor-subtracted lung included skewness, kurtosis, and coefficient of variation from perfusion SPECT and FDG PET and the global lung parenchymal glycolysis and mean standardized uptake value from FDG PET. Functional dose-volume parameters calculated in regions of highly functional lung, defined on perfusion (p) or SUV (s) images, included mean lung dose (pMLD, sMLD) and V20 (pV20, sV20). Fraction of integral lung function receiving ?20 Gy (pF20, sF20) was also calculated. Equivalent doses in 2 Gy per fraction (EQD2) were calculated to account for differences in treatment regimens and dose fractionation (EQD2Lung). RESULTS:Two anatomic dosimetric parameters (MLD, V20) and 4 functional dosimetric parameters (pMLD, pV20, pF20, sF20) were significant predictors of grade ?2 pneumonitis (area under the curve >0.84; P < .05). Dose-independent functional lung heterogeneity metrics were not associated with pneumonitis incidence. At thresholds of 100% sensitivity and 65% to 91% specificity, corresponding to maximum prediction accuracy for pneumonitis, these parameters had the following cutoff values: MLD = 13.6 Gy EQD2Lung, V20 = 25%, pMLD = 13.2 Gy EQD2Lung, pV20 = 15%, pF20 = 17%, and sF20 = 25%. Significant parameters MLD, V20, pF20, and sF20 were not cross-correlated to significant parameters pMLD and pV20, indicating that they may offer independently predictive information (Spearman ? < 0.7). CONCLUSIONS:We reported differences in anatomic and functional lung dosimetry between patients with and without pneumonitis in this limited patient cohort. Adding selected independent functional lung parameters may risk stratify patients for pneumonitis. Validation studies are ongoing in a prospective functional lung avoidance trial at our institution.
Project description:ObjectivesWe compared the computed tomographic (CT) volumetric analysis and anatomical segment counting (ASC) for predicting postoperative forced expiratory volume in 1 s (FEV1) and diffusing capacity for carbon monoxide (DLCO) in patients who had segmentectomy for early-stage lung cancer.MethodsA total of 175 patients who had segmentectomy for lung cancer and had postoperative pulmonary function test were included. CT volumetric analysis was performed by software, which could measure total lung and target segment volume from CT images. ASC and CT volumetric analysis were used to determine predicted postoperative (PPO) values and the concordance and difference of these values were assessed. The relationship between PPO values and actual postoperative values was also investigated.ResultsThe PPO-FEV1 and PPO-DLCO showed high concordance between 2 methods (concordance correlation coefficient = 0.96 for PPO-FEV1 and 0.95 for PPO-DLCO). There was no significant difference between PPO values as determined by 2 methods (P = 0.53 for PPO-FEV1, P = 0.25 for PPO-DLCO) and actual postoperative values [P = 0.77 (ASC versus actual) and P = 0.20 (CT versus actual) for FEV1; P = 0.41 (ASC versus actual) and P = 0.80 (CT versus actual) for DLCO]. We subdivided the patients according to poor pulmonary function test, the number of resected segments and the location of the resected lobe. All subgroup analyses revealed no significant difference between PPO values and actual postoperative values.ConclusionsBoth CT volumetric analysis and ASC showed high predictability for actual postoperative FEV1 and DLCO in segmentectomy.