Project description:BackgroundNeuroblastoma, mainly affecting children, is a lethal malignancy arising from the developing sympathetic nervous system. The genetic etiology of neuroblastoma remains mostly obscure. High mobility group AT-hook 2 (HMGA2), an oncogenic gene, is up-regulated in many tumors. Single nucleotide polymorphisms (SNPs) often modify cancer susceptibility. However, no studies are investigating the association between HMGA2 SNPs and neuroblastoma susceptibility.MethodsWe conducted a four-center case-control study to evaluate the association between three HMGA2 polymorphisms (rs6581658 A>G, rs8756 A>C and rs968697 T>C) and neuroblastoma susceptibility in a Chinese population with 505 cases and 1070 controls. Logistic regression was performed to evaluate the strength of the association.ResultsWe found that the rs8756 AC/CC genotypes were associated with a reduced neuroblastoma risk when compared to rs8756 AA genotype [Adjusted odds ratio (OR)=0.74, 95% confidence interval (CI)=0.56-0.99, P=0.039]. Carriers with 3 protective genotypes have lower neuroblastoma susceptibility than those without or with 0-2 protective genotypes. The stratified analysis revealed that the protective effects of rs8756 AC/CC genotypes were more predominant among children of age > 18 months, males, and subgroups with the tumor in the mediastinum. Furthermore, haplotype analysis uncovered that haplotype ACC significantly reduced neuroblastoma risk.ConclusionOur study indicated HMGA2 rs8756 A>C polymorphism is significantly associated with decreased neuroblastoma risk.
Project description:TP53, a tumor suppressor gene, plays a critical role in cell cycle control, apoptosis, and DNA damage repair. Previous studies have indicated that the TP53 gene Arg72Pro (rs1042522 C>G) polymorphism is associated with susceptibility to various types of cancer. We evaluated the association of the TP53 gene rs1042522 C>G polymorphism with neuroblastoma susceptibility in a hospital-based study among the Chinese Han population. Enrolled were 256 patients and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) generated using logistic regression models were used to determine the strength of the association of interest. No association was detected between rs1042522 C>G polymorphism and neuroblastoma risk. In our stratification analysis of age, gender, sites of origin, and clinical stages, we observed that subjects with rs1042522 CG/GG genotypes had a lower risk of developing neuroblastoma in the mediastinum (Adjusted OR=0.52, 95% CI=0.33-0.82, P=0.005) than those carrying the CC genotype. These results indicate that TP53 gene rs1042522 C>G polymorphism may exert a weak and site-specific effect on neuroblastoma risk in Southern Chinese children and warrant further confirmation.
Project description:BackgroundNeuroblastoma is a common malignant tumor stemming from the sympathetic nervous system in children, which is often life-threatening. The genetics of neuroblastoma remains unclear. Studies have shown that miRNAs participate in the regulation of a broad spectrum of biological pathways. The abnormity in the miRNA is associated with the risk of various cancers, including neuroblastoma. However, research on the relationship of miRNA polymorphisms with neuroblastoma susceptibility is still in the initial stage.MethodsIn this research, a retrospective case-control study was conducted to explore whether miR-100 rs1834306 A > G polymorphism is associated with neuroblastoma susceptibility. We enrolled 402 cases and 473 controls for the study. The logistic regression analysis was adopted to calculate odds ratios (ORs) and 95% confidence intervals (CIs) for the association between miR-100 rs1834306 A > G and neuroblastoma risk.ResultsOur results elucidated that the miR-100 rs1834306 A > G polymorphism was associated with the decreased risk of neuroblastoma (AG versus AA: adjusted OR = 0.72, 95% CI = 0.53-0.98, and P = 0.038). The subsequent stratified analysis further found that rs1834306 AG/GG genotype reduced the risk of neuroblastoma in the subgroup with tumors of the mediastinum origin (adjusted OR = 0.63, 95% CI = 0.41-0.95, and P = 0.029).ConclusionsIn summary, miR-100 rs1834306 A > G polymorphism was shown to associate with decreased neuroblastoma risk in Chinese children, especially for neuroblastoma of mediastinum origin. This conclusion needs to be verified in additional large-size case-control studies.
Project description:BackgroundNeuroblastoma, a neuroendocrine tumor originating from the sympathetic ganglia, is one of the most common malignancies in childhood. RTEL1 is critical in many fundamental cellular processes, such as DNA replication, DNA damage repair, genomic integrity, and telomere stability. Single nucleotide polymorphisms (SNPs) in the RTEL1 gene have been reported to confer susceptibility to multiple cancers, but their contributing roles in neuroblastoma remain unclear.MethodsWe conducted a study on 402 neuroblastoma cases and 473 controls to assess the association between four RTEL1 SNPs (rs3761124 T>C, rs3848672 T>C, rs3208008 A>C and rs2297441 G>A) and neuroblastoma susceptibility.ResultsOur results show that rs3848672 T>C is significantly associated with an increased risk of neuroblastoma [CC vs. TT/TC: adjusted odds ratio (OR)=1.39, 95% confidence interval (CI)=1.02-1.90, P=0.038]. The stratified analysis further indicated that boy carriers of the rs3848672 CC genotype had a higher risk of neuroblastoma, and all carriers had an increased risk of developing neuroblastoma of mediastinum origin. Moreover, the rs2297441 AA genotype increased neuroblastoma risk in girls and predisposed children to neuroblastoma arising from retroperitoneal.ConclusionOur study indicated that the rs3848672 CC and rs2297441 AA genotypes of the RTEL1 gene are significantly associated with an increased risk of neuroblastoma in Chinese children in a gender- and site-specific manner.
Project description:Neuroblastoma is a highly malignant extracranial solid tumor in pediatrics. ALKBH1 as a recently discovered DNA N6-methyldeoxyadenosine (6mA) demethylase closely links to tumorigenesis. Whether the ALKBH1 polymorphism contributes to neuroblastoma risk remains unclear. In the present study, we genotyped the ALKBH1 single nucleotide polymorphisms (SNPs) in 402 neuroblastoma patients and 473 healthy controls by TaqMan assay. Odds ratios (ORs) and 95% confidence intervals (CIs) were also calculated to evaluate the strength of the association. Our result exhibited that the rs2267755 C>T (CT vs. CC, adjusted OR=0.69, 95% CI=0.50-0.94, P=0.019) is significantly associated with reduced neuroblastoma risk. And its protective effect is particularly significant in children with tumors originating from the retroperitoneal. Combined genotype analysis revealed that carriers with 1-2 protective genotypes are more susceptible to neuroblastoma than those with 3-4 protective genotypes (adjusted OR=0.71, 95% CI=0.53-0.97, P=0.028). Moreover, the rs2267755 C>T is significantly associated with messenger RNA (mRNA) expression of ALKBH1 and three of its surrounding genes, including SNWQ, ADCK1, and RPL21P10. These results suggest that the rs2267755 C>T may be a genetic variant to reduce neuroblastoma risk.
Project description:BackgroundThe pro-inflammatory cytokine, interleukin-6 (IL-6), stimulates the metastasis of several neoplasms. An association of its serum level and the single nucleotide polymorphism (SNP) rs1800795 with neuroblastoma (NB) has been reported in American and Italian cohorts. This study was to clarify whether the same association exists in Chinese children.MethodsA total of 130 NB patients, with 77 boys (59%), 53 girls (41%), mean age 41 ± 5 months, were assigned to two groups: high risk (HR) versus intermediate-low risk (non-HR), and 50 healthy children were randomly selected as the age- and gender-matched controls. Peripheral blood samples were analyzed to determine serum IL-6 level using enzyme linked immunosorbent assay and rs1800795 SNPs phenotype using polymerase chain reaction and gene sequencing.ResultsThere were 87 NB patients in the HR group and 43 NB patients in the non-HR group. A comparison of allele and genotype frequencies of the rs1800795 polymorphism between patients and controls found no association with NB risk (P > 0.05). The frequency of GG+GC genotype was higher in HR-NB patients than in non-HR-NB patients (64.4% vs. 48.8%, P = 0.02), and serum IL-6 level was much higher in HR-NB patients with GG+GC genotype than in HR-NB patients with CC genotype (4.36 ± 1.1 pg/ml vs. 1.83 ± 0.5 pg/ml; P = 0.02), but not in Non-HR-NB patients.ConclusionsThe polymorphism rs1800795 is associated with serum IL-6 level and level of NB risk. GG genotype might indicate that the tumor is highly malignant (prone to metastasis) and associated with poor prognosis.
Project description:Neuroblastoma (NB) is a kind of childhood cancer that is a prevailing and deadly solid neoplasm among pediatric malignancies. The transcriptional output of MIR938 is capable of participating in the posttranscriptional modulation of gene expression, whereby it exerts its regulatory effect by modulating both the stability and translation of target mRNAs. Previous studies showed that MIR938 was associated with many cancers. Hence, functional genetic variants in the MIR938 can be attributed to NB risk. We recruited 402 neuroblastoma patients and 473 controls from the Children's Hospital of Nanjing Medical University and genotyped one MIR938 single nucleotide polymorphism (SNP) (rs2505901 T>C). There were significant associations between the rs2505901 T>C and NB risk [CC vs. TT: adjusted odds ratio (OR)=1.90, 95% confidence interval (CI)=1.02-3.55, P=0.045; CC vs. TT/TC: adjusted OR=2.02, 95% CI=1.09-3.75, P=0.026]. This analysis of genotypes revealed that T>C increased the risk of NB. Some borderline significant different relationships were observed in the stratified analyses: age≤18 months (adjusted OR=2.95, 95% CI=0.92-9.51, P=0.070), male sex (adjusted OR=2.19, 95% CI=0.95-5.08, P=0.067), and clinical stage III+IV (adjusted OR=2.12, 95% CI=0.98-4.56, P=0.055). This study revealed that the MIR938 rs2505901 T>C polymorphism may be a potential risk factor for neuroblastoma in Chinese children. In the long term, conducting large and diverse sample studies from different ethnicities will indeed be crucial in determining the role of MIR938 polymorphisms in NB risk. By including individuals from various ethnic backgrounds, researchers can account for potential genetic variations that may exist between populations.
Project description:In this case-control study, we analyzed the association between three single nucleotide polymorphisms (SNPs) in the CASC15 gene (rs6939340 A>G, rs4712653 T>C, and rs9295536 C>A) and neuroblastoma susceptibility in the Guangdong and Henan populations of China. We genotyped and analyzed 118 cases and 281 control subjects from Henan province and combined them with previously published data from the Guangdong population. In the Henan population, only the rs6939340 G>A variant homozygote AA was associated with decreased neuroblastoma risk [AA vs. GG: adjusted odds ratio (OR) = 0.47, 95% confidence interval (CI) = 0.23-0.98; P=0.045]. All three polymorphisms, individually and in combination, were associated with decreased neuroblastoma susceptibility in the Guangdong population. Moreover, subjects carrying 1-3 of these protective genotypes had lower neuroblastoma susceptibility than non-carriers (adjusted OR=0.65, 95% CI=0.51-0.84, P=0.0007). These results show that all three genetic variants of CASC15 identified in a genome-wide association study (GWAS) decrease neuroblastoma risk in two distinct Chinese populations.
Project description:Recent studies have revealed that long non-coding RNAs (lncRNAs) play critical roles in the tumorigenesis and proliferation of human cancer. Several polymorphisms of lncRNAs have been found to be involved in the risk of neuroblastoma (NB). However, studies on the relationship between polymorphisms in lncRNA exons and NB are infrequent. We evaluated the association between rs11752942 A > G polymorphism in lnc-RNA-uc003opf.1 exon and neuroblastoma susceptibility by performing a hospital-based study with 275 patients and 531 controls. Odds ratios (ORs) and 95% confidence intervals (CIs) assessed by using logistic regression models were used to determine the strength of the association. We found that the rs11752942 G allele is significantly associated with decreased neuroblastoma risk (AG vs. AA: adjusted OR = 0.72, 95% CI = 0.53-0.98, P = 0.038; and AG/GG vs. AA: adjusted OR = 0.74, 95% CI = 0.55-0.99, P = 0.045) after adjusting for age and gender. This association was more prominent in females, subjects with tumor in the mediastinum or early-stage. Furthermore, the expression quantitative trait locus analysis indicated that rs11752942 G was associated with decreased expression of its neighboring gene LRFN2 mRNA. These results indicate that lncRNA-uc003opf.1 may be a novel potentially functional lncRNA that may be used as a predictive marker, for it might contribute to decreased neuroblastoma risk.
Project description:Neuroblastoma is one of the most frequently occurring childhood cancers. The rs2168101 G>T polymorphism observed in the LMO1 gene is located at a conserved GATA transcription factor binding motif. This polymorphism was reported to be significantly associated with neuroblastoma susceptibility. However, whether this and other functional polymorphisms can affect neuroblastoma risk of Chinese children remains unknown. We conducted a two-center hospital-based case-control study with a total of 374 cases and 812 controls to assess the role of five LMO1 gene polymorphisms in the neuroblastoma risk. We confirmed that rs2168101 G>T was significantly associated with decreased neuroblastoma risk for both northern and southern Chinese children and the combined subjects [GT vs. GG: adjusted odds ratio (OR)=0.57, 95% confidence interval (CI)=0.44-0.74, P<0.0001; TT vs. GG: adjusted OR=0.29, 95% CI=0.15-0.56, P=0.0002; GT/TT vs. GG: adjusted OR=0.53, 95% CI=0.41-0.68, P<0.0001; and TT vs. GT/GG: adjusted OR=0.36, 95% CI=0.19-0.69, P=0.002] after adjustment for age and gender. This association was further confirmed by performing a stratifying analysis and a false-positive report probability analysis. Similar results were observed for the rs3750952 G>C polymorphism. In summary, the current study confirmed that the potentially functional LMO1 rs2168101 G>T and rs3750952 G>C polymorphisms were associated with neuroblastoma susceptibility. This research requires further validation with larger sample sizes and inclusion of different ethnicities.