Project description:Allergic disorders have now become a major worldwide public health issue, but the effective treatment options remain limited. We report a novel approach to block allergic reactivity by targeting the surface-bound IgE of the allergic effector cells via low-affinity anti-human IgE Abs with dissociation constants in the 10-6 to 10-8 M range. We demonstrated that these low-affinity anti-IgE mAbs bind to the cell surface-bound IgE without triggering anaphylactic degranulation even at high concentration, albeit they would weakly upregulate CD203c expression on basophils. This is in contrast to the high-affinity anti-IgE mAbs that trigger anaphylactic degranulation at low concentration. Instead, the low-affinity anti-IgE mAbs profoundly block human peanut- and cat-allergic IgE-mediated basophil CD63 induction indicative of anaphylactic degranulation; suppress peanut-, cat-, and dansyl-specific IgE-mediated passive cutaneous anaphylaxis; and attenuate dansyl IgE-mediated systemic anaphylaxis in human FcεRIα transgenic mouse model. Mechanistic studies reveal that the ability of allergic reaction blockade by the low-affinity anti-IgE mAbs was correlated with their capacity to downregulate the surface IgE and FcεRI level on human basophils and the human FcεRIα transgenic mouse bone marrow-derived mast cells via driving internalization of the IgE/FcεRI complex. Our studies demonstrate that targeting surface-bound IgE with low-affinity anti-IgE Abs is capable of suppressing allergic reactivity while displaying an excellent safety profile, indicating that use of low-affinity anti-IgE mAbs holds promise as a novel therapeutic approach for IgE-mediated allergic diseases.
Project description:BackgroundAffinity and clonality of allergen-specific IgE antibodies are important determinants for the magnitude of IgE-mediated allergic inflammation.ObjectiveWe sought to analyze the contribution of heavy and light chains of human allergen-specific IgE antibodies for allergen specificity and to test whether promiscuous pairing of heavy and light chains with different allergen specificity allows binding and might affect affinity.MethodsTen IgE Fabs specific for 3 non-cross-reactive major timothy grass pollen allergens (Phl p 1, Phl p 2, and Phl p 5) obtained by means of combinatorial cloning from patients with grass pollen allergy were used to construct stable recombinant single chain variable fragments (ScFvs) representing the original Fabs and shuffled ScFvs in which heavy chains were recombined with light chains from IgE Fabs with specificity for other allergens by using the pCANTAB 5 E expression system. Possible ancestor genes for the heavy chain and light chain variable region-encoding genes were determined by using sequence comparison with the ImMunoGeneTics database, and their chromosomal locations were determined. Recombinant ScFvs were tested for allergen specificity and epitope recognition by means of direct and sandwich ELISA, and affinity by using surface plasmon resonance experiments.ResultsThe shuffling experiments demonstrate that promiscuous pairing of heavy and light chains is possible and maintains allergen specificity, which is mainly determined by the heavy chains. ScFvs consisting of different heavy and light chains exhibited different affinities and even epitope specificity for the corresponding allergen.ConclusionOur results indicate that allergen specificity of allergen-specific IgE is mainly determined by the heavy chains. Different heavy and light chain pairings in allergen-specific IgE antibodies affect affinity and epitope specificity and thus might influence clinical reactivity to allergens.
Project description:Mast cells and basophils have long been implicated in the pathogenesis of IgE-mediated hypersensitivity reactions. They express the high-affinity IgE receptor, FcϵRI, on their surface. Antigen-induced crosslinking of IgE antibodies bound to that receptor triggers a signaling cascade that results in activation, leading to the release of an array of preformed vasoactive mediators and rapidly synthesized lipids, as well as the de novo production of inflammatory cytokines. In addition to bearing activating receptors like FcεRI, these effector cells of allergy express inhibitory ones including FcγR2b, an IgG Fc receptor with a cytosolic inhibitory motif that activates protein tyrosine phosphatases that suppress IgE-mediated activation. We and others have shown that food allergen-specific IgG antibodies strongly induced during the course of oral immunotherapy (OIT), signal via FcγR2b to suppress IgE-mediated mast cell and basophil activation triggered by food allergen challenge. However, the potential inhibitory effects of IgA antibodies, which are also produced in response to OIT and are present at high levels at mucosal sites, including the intestine where food allergens are encountered, have not been well studied. Here we uncover an inhibitory function for IgA. We observe that IgA binds mouse bone marrow-derived mast cells (BMMCs) and peritoneal mast cells. Binding to BMMCs is dependent on calcium and sialic acid. We also found that IgA antibodies inhibit IgE-mediated mast cell degranulation in an allergen-specific fashion. Antigen-specific IgA inhibits IgE-mediated mast cell activation early in the signaling cascade, suppressing the phosphorylation of Syk, the proximal protein kinase mediating FcεRI signaling, and suppresses mast cell production of cytokines. Furthermore, using basophils from a peanut allergic donor we found that IgA binds to basophils and that activation by exposure to peanuts is effectively suppressed by IgA. We conclude that IgA serves as a regulator of mast cell and basophil degranulation, suggesting a physiologic role for IgA in the maintenance of immune homeostasis at mucosal sites.
Project description:IgG4 purified from patients undergoing specific allergen immunotherapy inhibits the activities of the serum IgE in in vitro assays and is thought to reduce the symptoms of the disease. However, it is not known whether this is related to an intrinsic property of this subclass or only the allergen specificity. We tested the hypothesis that allergen specificity is the critical determinant for this activity using a panel of antibodies with identical specificity but different subclasses. The different antibodies were all able to inhibit the activity of IgE to the same extent. We demonstrate that specificity is the dominant factor determining the ability of an antibody to block allergen-dependent IgE activity.
Project description:BackgroundSerum inhibition of allergen-specific IgE has been associated with competing IgG4 and non-specific polyclonal IgE. In allergen immunotherapy, beneficial responses have been associated with high IgG4/IgE ratios. Helminths potentiate antibody class switching to IgG4 and stimulate polyclonal IgE synthesis; therefore, we hypothesized a role for helminth-associated IgG4 and total IgE in protection against atopic sensitization and clinical allergy (asthma) in tropical low-income countries.MethodsAmong community residents of Ugandan rural Schistosoma mansoni (Sm)-endemic islands and a mainland urban setting with lower helminth exposure, and among urban asthmatic schoolchildren and non-asthmatic controls, we measured total, Schistosoma adult worm antigen (SWA)-specific, Schistosoma egg antigen (SEA)-specific and allergen (house dust mite [HDM] and German cockroach)-specific IgE and IgG4 by ImmunoCAP® and/or ELISA. We assessed associations between these antibody profiles and current Sm infection, the rural-urban environment, HDM and cockroach skin prick test (SPT) reactivity, and asthma.ResultsTotal IgE, total IgG4 and SWA-, SEA- and allergen-specific IgE and IgG4 levels were significantly higher in the rural, compared to the urban setting. In both community settings, both Sm infection and SPT reactivity were positively associated with allergen-specific and total IgE responses. SPT reactivity was inversely associated with Schistosoma-specific IgG4, allergen-specific IgG4/IgE ratios and total IgE/allergen-specific IgE ratios. Asthmatic schoolchildren, compared with non-asthmatic controls, had significantly higher levels of total and allergen-specific IgE, but lower ratios of allergen-specific IgG4/IgE and total IgE/allergen-specific IgE.Conclusions and clinical relevanceOur immuno-epidemiological data support the hypothesis that the IgG4-IgE balance and the total IgE-allergen-specific IgE balance are more important than absolute total, helminth- or allergen-specific antibody levels in inhibition of allergies in the tropics.
Project description:Currently, allergen-specific immunotherapy (AIT) for ragweed allergy is still based on natural allergen extracts. This study aimed to analyse the ability of four commercially available AIT vaccines (CLUSTOID, TYRO-SIT, POLLINEX Quattro Plus and Diater Depot) regarding their ability to induce IgG antibodies against ragweed pollen allergens in rabbits. Accordingly, the IgG reactivity of AIT-induced rabbit sera was tested for ten different ragweed pollen allergens (Amb a 1, 3, 4, 5, 6, 8, 9, 10, 11 and 12) by an ELISA. Furthermore, the ability of rabbit AIT-specific sera to block allergic patients' IgE binding to relevant ragweed allergens (Amb a 1, 4, 6, 8 and 11) and to inhibit allergen-induced basophil activation was evaluated by an IgE inhibition ELISA and a mediator release assay. Only two AIT vaccines (Diater Depot > CLUSTOID) induced relevant IgG antibody levels to the major ragweed allergen Amb a 1. The IgG responses induced by the AIT vaccines against the other ragweed allergens were low and highly heterogeneous. Interestingly, the kinetics of IgG responses were different among the AIT vaccines and even within one AIT vaccine (Diater Depot) for Amb a 1 (long-lasting) versus Amb a 8 and Amb a 11 (short-lived). This could be due to variations in allergen contents, the immunogenicity of the allergens, and different immunization protocols. The IgE inhibition experiments showed that rabbit AIT-specific sera containing high allergen-specific IgG levels were able to inhibit patients' IgE binding and prevent the mediator release with Diater Depot. The high levels of allergen-specific IgG levels were associated with their ability to prevent the recognition of allergens by patients' IgE and allergen-induced basophil activation, indicating that the measurement of allergen-induced IgG could be a useful surrogate marker for the immunological efficacy of vaccines. Accordingly, the results of our study may be helpful for the selection of personalized AIT vaccination strategies for ragweed-allergic patients.
Project description:Cat allergy is a major trigger factor for respiratory reactions (asthma and rhinitis) in patients with immunoglobulin E (IgE) sensitization. In this study, we used a comprehensive panel of purified cat allergen molecules (rFel d 1, nFel d 2, rFel d 3, rFel d 4, rFel d 7, and rFel d 8) that were obtained by recombinant expression in Escherichia coli or by purification as natural proteins to study possible associations with different phenotypes of cat allergy (i.e., rhinitis, conjunctivitis, asthma, and dermatitis) by analyzing molecular IgE recognition profiles in a representative cohort of clinically well-characterized adult cat allergic subjects (n = 84). IgE levels specific to each of the allergen molecules and to natural cat allergen extract were quantified by ImmunoCAP measurements. Cumulative IgE levels specific to the cat allergen molecules correlated significantly with IgE levels specific to the cat allergen extract, indicating that the panel of allergen molecules resembled IgE epitopes of the natural allergen source. rFel d 1 represented the major cat allergen, which was recognized by 97.2% of cat allergic patients; however, rFel d 3, rFel d 4, and rFel d 7 each showed IgE reactivity in more than 50% of cat allergic patients, indicating the importance of additional allergens in cat allergy. Patients with cat-related skin symptoms showed a trend toward higher IgE levels and/or frequencies of sensitization to each of the tested allergen molecules compared with patients suffering only from rhinitis or asthma, while there were no such differences between patients with rhinitis and asthma. The IgE levels specific to allergen molecules, the IgE levels specific to cat allergen extract, and the IgE levels specific to rFel d 1 were significantly higher in patients with four different symptoms compared with patients with 1-2 symptoms. This difference was more pronounced for the sum of IgE levels specific to the allergen molecules and to cat extract than for IgE levels specific for rFel d 1 alone. Our study indicates that, in addition to rFel d 1, rFel d 3, rFel d 4, and rFel d 7 must be considered as important cat allergens. Furthermore, the cumulative sum of IgE levels specific to cat allergen molecules seems to be a biomarker for identifying patients with complex phenotypes of cat allergy. These findings are important for the diagnosis of IgE sensitization to cats and for the design of allergen-specific immunotherapies for the treatment and prevention of cat allergy.
Project description:BackgroundSpecific immunotherapy (SIT) is the only treatment with proved long-term curative potential in patients with allergic disease. Allergen-specific IgE is the causative agent of allergic disease, and antibodies contribute to SIT, but the effects of SIT on aeroallergen-specific B-cell repertoires are not well understood.ObjectiveWe sought to characterize the IgE sequences expressed by allergen-specific B cells and track the fate of these B-cell clones during SIT.MethodsWe used high-throughput antibody gene sequencing and identification of allergen-specific IgE with combinatorial antibody fragment library technology to analyze immunoglobulin repertoires of blood and the nasal mucosa from aeroallergen-sensitized subjects before and during the first year of subcutaneous SIT.ResultsOf 52 distinct allergen-specific IgE heavy chains from 8 allergic donors, 37 were also detected by using high-throughput antibody gene sequencing of blood samples, nasal mucosal samples, or both. The allergen-specific clones had increased persistence, higher likelihood of belonging to clones expressing other switched isotypes, and possibly larger clone size than the rest of the IgE repertoire. Clone members in nasal tissue showed close mutational relationships.ConclusionIn the future, combining functional binding studies, deep antibody repertoire sequencing, and information on clinical outcomes in larger studies might aid assessment of SIT mechanisms and efficacy.
Project description:Allergy is a clinical condition that reflects a deviated function of the immune system. The purpose of this study was to evaluate serum allergen-specific IgE (sIgE) along with clinical manifestations of allergy in patients with diagnosed primary immunodeficiency (PID). 72 patients, aged 1-17 years, diagnosed with PID and hospitalized between July 2020 and February 2021 were included in the study. Blood samples were obtained by venipuncture. sIgE (30 allergens), blood eosinophil count, as well as total IgE and IgG were measured and assessed in relation to a detailed medical examination. Serum sIgE was detected in the blood of 50% of the patients in the study group, which significantly correlated (p < 0.0001) with clinical symptoms of allergy. During the period of the study, 61.1% of the patients showed symptoms of allergy, with 77.27% of them having tested positive for sIgE. The total IgE level was elevated in 18.06% of the patients and correlated with clinical symptoms of allergy (p = 0.004). An elevated total IgE level was not observed in children receiving immunoglobulin replacement therapy. The study showed that serum sIgE and total IgE together might be a plausible diagnostic tool for PID patients. However, for patients receiving immunoglobulin replacement therapy, the assessment of total IgE is not useful.