Project description:Diabetic nephropathy accounts for the most serious microvascular complication of diabetes mellitus. It is suggested that the prevalence of diabetic nephropathy will continue to increase in future posing a major challenge to the healthcare system resulting in increased morbidity and mortality. It occurs as a result of interaction between both genetic and environmental factors in individuals with both type 1 and type 2 diabetes. Genetic susceptibility has been proposed as an important factor for the development and progression of diabetic nephropathy, and various research efforts are being executed worldwide to identify the susceptibility gene for diabetic nephropathy. Numerous single nucleotide polymorphisms have been found in various genes giving rise to various gene variants which have been found to play a major role in genetic susceptibility to diabetic nephropathy. The risk of developing diabetic nephropathy is increased several times by inheriting risk alleles at susceptibility loci of various genes like ACE, IL, TNF-α, COL4A1, eNOS, SOD2, APOE, GLUT, etc. The identification of these genetic variants at a biomarker level could thus, allow the detection of those individuals at high risk for diabetic nephropathy which could thus help in the treatment, diagnosis and early prevention of the disease. The present review discusses about the various gene variants found till date to be associated with diabetic nephropathy.
Project description:BackgroundGlyoxalase 1 (GLO1) is an enzyme that metabolizes methylglyoxal (MG), which is a competitive partial agonist at GABAA receptors. Inhibition of GLO1 increases concentrations of MG in the brain and decreases binge-like ethanol (EtOH) drinking. This study assessed whether inhibition of GLO1, or genetic overexpression of Glo1, would also alter the locomotor effects of EtOH, which might explain reduced EtOH consumption following GLO1 inhibition. We used the prototypical GABAA receptor agonist muscimol as a positive control.MethodsMale C57BL/6J mice were pretreated with either the GLO1 inhibitor S-bromobenzylglutathione cyclopentyl diester (pBBG; 7.5 mg/kg; Experiment 1) or muscimol (0.75 mg/kg; Experiment 2), or their corresponding vehicle. We then determined whether locomotor response to a range of EtOH doses (0, 0.5, 1.0, 1.5, 2.0, and 2.5) was altered by either pBBG or muscimol pretreatment. We also examined the locomotor response to a range of EtOH doses in FVB/NJ wild-type and transgenic Glo1 overexpressing mice (Experiment 3). Anxiety-like behavior (time spent in the center of the open field) was assessed in all 3 experiments.ResultsThe EtOH dose-response curve was not altered by pretreatment with pBBG or by transgenic overexpression of Glo1. In contrast, muscimol blunted locomotor stimulation at low EtOH doses and potentiated locomotor sedation at higher EtOH doses. No drug or genotype differences were seen in anxiety-like behavior after EtOH treatment.ConclusionsThe dose of pBBG used in this study is within the effective range shown previously to reduce EtOH drinking. Glo1 overexpression has been previously shown to increase EtOH drinking. However, neither manipulation altered the dose-response curve for EtOH's locomotor effects, whereas muscimol appeared to enhance the locomotor sedative effects of EtOH. The present data demonstrate that reduced EtOH drinking caused by GLO1 inhibition is not due to potentiation of EtOH's stimulant or depressant effects.
Project description:OBJECTIVE:Diabetic nephropathy (DN) and diabetic retinopathy (DR) comprise major microvascular complications of diabetes that occur with a high concordance rate in patients and are considered to potentially share pathogeneses. In this case-control study, we sought to investigate whether DR-related single nucleotide polymorphisms (SNPs) exert pleiotropic effects on renal function outcomes among patients with diabetes. RESEARCH DESIGN AND METHODS:A total of 33 DR-related SNPs were identified by replicating published SNPs and via a genome-wide association study. Furthermore, we assessed the cumulative effects by creating a weighted genetic risk score and evaluated the discriminatory and prediction ability of these genetic variants using DN cases according to estimated glomerular filtration rate (eGFR) status along with a cohort with early renal functional decline (ERFD). RESULTS:Multivariate logistic regression models revealed that the DR-related SNPs afforded no individual or cumulative genetic effect on the nephropathy risk, eGFR status or ERFD outcome among patients with type two diabetes in Taiwan. CONCLUSION:Our findings indicate that larger studies would be necessary to clearly ascertain the effects of individual genetic variants and further investigation is also required to identify other genetic pathways underlying DN.
Project description:IntroductionThe gut microbiota is strongly associated with multiple kidney diseases, and since microbial composition is heritable, we hypothesized that genetic variations controlling gut microbiota composition were associated with diabetic nephropathy susceptibility or clinical subphenotypes.MethodsThe genetic variations associated with gut microbiota were retrieved from the genome-wide association study database and analysed in our diabetic nephropathy susceptibility gene screening cohort. Candidate microorganisms with possible genetic associations were identified using the annotation of microbial quantitative trait loci. Finally, the candidate microorganisms were verified by 16S rDNA gene sequencing.ResultsThere were 13 genetic variation loci associated with susceptibility to diabetic nephropathy. The TCF7L2 risk genotype was associated with a long duration of diabetes and high diastolic blood pressure, the ZCWPW2 risk genotype was associated with increased glycosylated hemoglobin, and the ZNRF3 risk genotype was associated with an increased urinary microalbumin-to-creatinine ratio. Both the ZNRF3 and SPECC1L risk genotypes were associated with the abundance of Lactococcus. 16S rDNA sequencing confirmed that there was indeed a significant difference in the Lactococcus genus between DN and DM patients.ConclusionsIn this study, we preliminarily confirmed that the gut microbiota of diabetic nephropathy patients is influenced by host genetics and provide a new basis for future accurate diagnosis and treatment.
Project description:BackgroundAccumulating evidence indicates that mitophagy is crucial for the development of diabetic nephropathy (DN). However, little is known about the key genes involved. The present study is to identify the potential mitophagy-related genes (MRGs) in DN.MethodsFive datasets were obtained from the Gene Expression Omnibus (GEO) database and were split into the training and validation set. Then the differentially expressed MRGs were screened and further analyzed for GO and KEGG enrichment. Next, three algorithms (SVM-RFE, LASSO and RF) were used to identify hub genes. The ROC curves were plotted based on the hub genes. We then used the CIBERSORT algorithm to assess the infiltration of 22 types of immune cells and explore the correlation between hub genes and immune cells. Finally, the Nephroseq V5 tool was used to analyze the correlation between hub genes and GFR in DN patients.ResultsCompared with the tubulointerstitium, the expression of MRGs was more noticeably varied in the glomeruli. Twelve DE-MRGs were identified in glomerular samples, of which 11 genes were down-regulated and only MFN1 was up-regulated. GO and KEGG analysis indicated that several enrichment terms were associated with changes in autophagy. Three genes (MFN1, ULK1 and PARK2) were finally determined as potential hub genes by three algorithms. In the training set, the AUROC of MFN1, ULK1 and PARK2 were 0.839, 0.906 and 0.842. However, the results of the validation set demonstrated that MFN1 and PARK2 had no significant difference in distinguishing DN samples from healthy controls, while the AUROC of ULK1 was 0.894. Immune infiltration analysis using CIBERSORT showed that ULK1 was positively related to neutrophils, whereas negatively related to M1 and M2 macrophages. Finally, ULK1 was positively correlated with GFR in Nephroseq database.ConclusionsULK1 is a potential biomarker for DN and may influence the development of diabetic nephropathy by regulating mitophagy.
Project description:BackgroundDiabetic nephropathy (DN), the primary driver of end-stage kidney disease, is a problem with serious consequences for society's health. Single nucleotide polymorphisms (SNPs) can define differences in susceptibility to DN and aid in development of personalized treatment. Giving the importance of epoxyeicosatrienoic acids (EETs) in kidney health, we aimed to study the association between two SNPs in the genes controlling synthesis and degradation of EETs (CYP2J2 rs2280275 and EPHX2 rs751141 respectively) and susceptibility of type 2 diabetes mellitus (T2DM) patients to develop DN.Patients and methodsTwo hundred subjects were enrolled and categorized into three groups: group I (80 T2DM patients with DN), group II (60 T2DM patients without DN) and group III (60 healthy controls). Urea, creatinine, albumin/creatinine ratio (ACR), and eGFR were measured for all participants. Genotyping of CYP2J2 rs2280275 and EPHX2 rs751141 was done by real time PCR.ResultsThere was no significant difference between the studied groups regarding CYP2J2 rs2280275. In contrast, EPHX2 rs751141 was associated with increased risk of DN under a dominant model (GG vs GA+AA: OR=0.375; 95% CI (0.19-0.75), P=0.006) in unadjusted model and after adjustment for age and sex (OR=0.440; 95% CI (0.21-0.92), P=0.029), recessive model (AA vs GG+GA: OR=0.195; 95% CI (0.05-0.74), P=0.017) and additive model (GA vs GG+AA): OR=0.195; 95% CI (0.05-0.74), P=0.017).ConclusionCYP2J2 rs2280275 was not associated with DN predisposition. However, EPHX2 rs751141 could be a genetic marker for development and progression of DN among Egyptian T2DM patients.
Project description:LncRNA is reported to have important role in diabetic nephropathy (DN). Here, we aim to identify key lncRNAs of DN using bioinformatics and systems biological methods. METHOD:Five microarray data sets from Gene Expression Omnibus (GEO) database were included. Probe sets were re-annotated. In the training set, differential expressed genes (DEGs) were identified. Weighted gene co-expression network analysis (WGCNA) was constructed to screen diabetic-related hub genes and reveal their potential biological function. Two more human data sets and mouse data sets were used as validation sets. RESULTS:A total of 424 DEGs, including 10 lncRNAs, were filtered in the training data set. WGCNA and enrichment analysis of hub genes showed that inflammation and metabolic disorders are prominent in DN. Three key lncRNAs (NR_130134.1, NR_029395.1 and NR_038335.1) were identified. These lncRNAs are also differently expressed in another two human data sets. Functional enrichment of the mouse data sets showed consistent changes with that in human, indicating similar changes in gene expression pattern of DN and confirmed confidence of our analysis. Human podocytes and mesangial cells were culture in vitro. QPCR and fluorescence in situ hybridization were taken out to validate the expression and relationship of key lncRNAs and their related mRNAs. Results were also consistent with our analysis. CONCLUSIONS:Inflammation and metabolic disorders are prominent in DN. We identify three lncRNAs that are involved in these processes possibly by interacting with co-expressed mRNAs.
Project description:BackgroundDiabetes mellitus is the most common chronic endocrine disorder, affecting an estimated population of 382 million people worldwide. It is associated with microvascular and macrovascular complications, including diabetic nephropathy (DN); primary cause of end-stage renal disease. Different inflammatory and angiogenic molecules in various pathways are important modulators in the pathogenesis and progression of diabetic nephropathy. Differential disease risk in DN may be partly attributable to genetic susceptibility. In this meta-analysis, we aimed to determine which of the previously investigated genetic variants in these pathways are significantly associated with the development of DN and to examine the functional role of these genes.MethodsA systematic search was conducted to collect and analyze all studies published till June 2013; that investigated the association between genetic variants involved in inflammatory cytokines and angiogenesis and diabetic nephropathy. Genetic variants associated with DN were selected and analyzed by using Comprehensive Meta Analysis software. Pathway analysis of the genes with variants showing significant positive association with DN was performed using Genomatix Genome Analyzer (Genomatix, Munich, Germany).ResultsAfter the inclusion and exclusion criteria for this analysis, 34 studies were included in this meta-analysis. 11 genetic variants showed significant positive association with DN in a random-effects meta-analysis. These included genetic variants within or near VEGFA, CCR5, CCL2, IL-1, MMP9, EPO, IL-8, ADIPOQ and IL-10. rs1800871 (T) genetic variant in IL-10 showed protective effect for DN. Most of these eleven genetic variants were involved in GPCR signaling and receptor binding pathways whereas four were involved in chronic kidney failure. rs833061 [OR 2.08 (95% CI 1.63-2.66)] in the VEGFA gene and rs3917887 [OR 2.04 (95% CI 1.64-2.54)] in the CCL2 gene showed the most significant association with the risk of diabetic nephropathy.ConclusionsOur results indicate that 11 genetic variants within or near VEGFA, CCR5, CCL2, IL-1, MMP9, EPO, IL-8, ADIPOQ and IL-10 showed significant positive association with diabetic nephropathy. Gene Ontology or pathway analysis showed that these genes may contribute to the pathophysiology of DN. The functional relevance of the variants and their pathways can lead to increased biological insights and development of new therapeutic targets.
Project description:Gene expression profiling in glomeruli from human kidneys with diabetic nephropathy Keywords = Diabetes Keywords = kidney Keywords = glomeruli Keywords: other