Project description:BackgroundCombining extinction training with cognitive-enhancing pharmacotherapy represents a novel strategy for improving the efficacy of exposure therapy for drug relapse prevention. We investigated if the selective glycine transporter-1 (GlyT-1) inhibitor RO4543338 could facilitate extinction of cocaine-conditioned responses and attenuate reacquisition of cocaine-seeking behavior.MethodsRats were trained to self-administer cocaine (0.3mg/kg), which was associated with a 2-s light cue under a second-order schedule of i.v. drug injection. Rats received vehicle, 30 or 45mg/kg of RO4543338 prior to three 1-h extinction-training sessions spaced at weekly intervals. Responses were extinguished by substituting saline for cocaine while maintaining response-contingent cue presentations. Reacquisition of cocaine-seeking behavior during self-administration sessions began 1 week after the last extinction session. Control experiments were conducted under conditions that precluded explicit extinction of cocaine-conditioned responses.ResultsCompared to vehicle, 30 and 45mg/kg RO4543338 significantly decreased responding early in extinction training and during subsequent reacquisition sessions. The latter effect persisted for at least five sessions. In control studies, reacquisition of cocaine-seeking behavior was not altered when RO4543338 was administered either prior to weekly self-administration control sessions or prior to weekly control sessions in which cocaine and cues were omitted and the levers retracted.ConclusionsAs the GlyT-1 inhibitor facilitated cocaine-cue extinction learning and attenuated subsequent reacquisition of cocaine-seeking behavior, this class of compounds may have utility as a pharmacological adjunct to cocaine-cue exposure therapy in addicts.
Project description:Neuropsychiatric disorders are often characterized by impaired insight into behaviour. Such an insight deficit has been suggested, but never directly tested, in drug addiction. Here we tested for the first time this impaired insight hypothesis in drug addiction, and examined its potential association with drug-seeking behaviour. We also tested potential modulation of these effects by cocaine urine status, an individual difference known to impact underlying cognitive functions and prognosis. Sixteen cocaine addicted individuals testing positive for cocaine in urine, 26 cocaine addicted individuals testing negative for cocaine in urine, and 23 healthy controls completed a probabilistic choice task that assessed objective preference for viewing four types of pictures (pleasant, unpleasant, neutral and cocaine). This choice task concluded by asking subjects to report their most selected picture type; correspondence between subjects' self-reports with their objective choice behaviour provided our index of behavioural insight. Results showed that the urine positive cocaine subjects exhibited impaired insight into their own choice behaviour compared with healthy controls; this same study group also selected the most cocaine pictures (and fewest pleasant pictures) for viewing. Importantly, however, it was the urine negative cocaine subjects whose behaviour was most influenced by insight, such that impaired insight in this subgroup only was associated with higher cocaine-related choice on the task and more severe actual cocaine use. These findings suggest that interventions to enhance insight may decrease drug-seeking behaviour, especially in urine negative cocaine subjects, potentially to improve their longer-term clinical outcomes.
Project description:Cognitive enhancers that act by increasing glycine transmission might be useful adjuncts to cocaine-cue extinction training to deter relapse. The study investigated the effects of combining treatments of the glycine transporter-1 (GlyT-1) inhibitor, Org24598, with extinction training on the subsequent reacquisition of cocaine self-administration. Squirrel monkeys and rats were trained to self-administer cocaine under a second-order schedule of intravenous drug injection in which responding was maintained by cocaine injections and a cocaine-paired visual stimulus. During three weekly extinction sessions, saline was substituted for cocaine but responding still produced the cocaine-paired stimulus. Subjects were treated with Org24598 or vehicle, either before or after each extinction session. One week later, cocaine injections were restored, and reacquisition of cocaine self-administration was evaluated over 15 sessions. Compared with vehicle, administration of Org24598 (1.0 mg/kg in monkeys; 3.0 or 7.5 mg/kg in rats) before each extinction session significantly inhibited reacquisition of cocaine self-administration in each species. In contrast, administration of Org24598 (1.0 mg/kg in monkeys) following, rather than preceding, each extinction session did not affect reacquisition compared with vehicle. When extinction training was replaced by cocaine self-administration or abstinence control conditions, treatment with the same doses of Org24598 resulted in reacquisition that was significantly more rapid than the reacquisition observed when Org24598 was administered before extinction training sessions. The results support the potential clinical utility of GlyT-1 inhibitor pretreatments combined with cocaine-cue extinction training to inhibit relapse.
Project description:Nonspecific histone deacetylase (HDAC) inhibition has been shown to facilitate the extinction of drug-seeking behavior in a manner resistant to reinstatement. A key open question is which specific HDAC is involved in the extinction of drug-seeking behavior. Using the selective HDAC3 inhibitor RGFP966, we investigated the role of HDAC3 in extinction and found that systemic treatment with RGFP966 facilitates extinction in mice in a manner resistant to reinstatement. We also investigated whether the facilitated extinction is related to the enhancement of extinction consolidation during extinction learning or to negative effects on performance or reconsolidation. These are key distinctions with regard to any compound being used to modulate extinction, because a more rapid decrease in a defined behavior is interpreted as facilitated extinction. Using an innovative combination of behavioral paradigms, we found that a single treatment of RGFP966 enhances extinction of a previously established cocaine-conditioned place preference, while simultaneously enhancing long-term object-location memory within subjects. During extinction consolidation, HDAC3 inhibition promotes a distinct pattern of histone acetylation linked to gene expression within the infralimbic cortex, hippocampus, and nucleus accumbens. Thus, the facilitated extinction of drug-seeking cannot be explained by adverse effects on performance. These results demonstrate that HDAC3 inhibition enhances the memory processes involved in extinction of drug-seeking behavior.
Project description:UnlabelledThe ventromedial prefrontal cortex (vmPFC) has been shown to negatively regulate cocaine-seeking behavior, but the precise conditions by which vmPFC activity can be exploited to reduce cocaine relapse are currently unknown. We used viral-mediated gene transfer of designer receptors (DREADDs) to activate vmPFC neurons and examine the consequences on cocaine seeking in a rat self-administration model of relapse. Activation of vmPFC neurons with the Gq-DREADD reduced reinstatement of cocaine seeking elicited by cocaine-associated cues, but not by cocaine itself. We used a retro-DREADD approach to confine the Gq-DREADD to vmPFC neurons that project to the medial nucleus accumbens shell, confirming that these neurons are responsible for the decreased cue-induced reinstatement of cocaine seeking. The effects of vmPFC activation on cue-induced reinstatement depended on prior extinction training, consistent with the reported role of this structure in extinction memory. These data help define the conditions under which chemogenetic activation of extinction neural circuits can be exploited to reduce relapse triggered by reminder cues.Significance statementThe ventromedial prefrontal cortex (vmPFC) projection to the nucleus accumbens shell is important for extinction of cocaine seeking, but its anatomical proximity to the relapse-promoting projection from the dorsomedial prefrontal cortex to the nucleus accumbens core makes it difficult to selectively enhance neuronal activity in one pathway or the other using traditional pharmacotherapy (e.g., systemically administered drugs). Viral-mediated gene delivery of an activating Gq-DREADD to vmPFC and/or vmPFC projections to the nucleus accumbens shell allows the chemogenetic exploitation of this extinction neural circuit to reduce cocaine seeking and was particularly effective against relapse triggered by cocaine reminder cues.
Project description:BackgroundIndividuals with schizophrenia have high rates of comorbid substance use problems. One potential explanation for this comorbidity is similar neuropathophysiology in substance use and schizophrenia, which may arise from shared genetic risk factors between the two disorders. Here we investigated if genetic risk for schizophrenia could affect drug reward and reinforcement for cocaine in an established mouse model of genetic risk for schizophrenia, the neuregulin 1 transmembrane domain heterozygous (Nrg1 TM HET) mouse.MethodsWe examined drug-induced locomotor sensitization and conditioned place preference for several cocaine doses (5, 10, 20, 30 mg/kg) in male adult Nrg1 TM HET and wild-type-like (WT) littermates. We also investigated intravenous self-administration of and motivation for cocaine (doses 0.1, 0.5, 1 mg/kg/infusion), as well as extinction and cue-induced reinstatement of cocaine. In a follow-up experiment, we examined self-administration, extinction and cue-induced reinstatement of a natural reward, oral sucrose.ResultsCocaine preference was similar between Nrg1 TM HET mice and WT littermates at all doses tested. Locomotor sensitization to cocaine was not affected by Nrg1 genotype at any dose. Although self-administration and motivation for cocaine was unaffected, extinction of cocaine self-administration was impaired in Nrg1 TM HET compared to WT controls, and cue-induced reinstatement was greater in Nrg1 mutants in the middle of the reinstatement session. Sucrose self-administration and extinction thereof was not affected by genotype, but inactive lever responding was elevated during cue-induced reinstatement for operant sucrose in Nrg1 TM HET mice compared to WTs.DiscussionThese results suggest impaired response inhibition for cocaine in Nrg1 TM HET mice and suggests Nrg1 mutation may contribute to behaviours which can limit control over cocaine use.
Project description:IntroductionCocaine dependence affects millions of individuals worldwide; however, there are no pharmacotherapeutic and/or diagnostic solutions. Recent evidence suggests a role for lipid signaling in the development and maintenance of addiction, highlighting the need to understand how lipid remodeling mediates neuroadaptation after cocaine exposure.MethodsThis study utilized shotgun lipidomics to assess cocaine-induced lipid remodeling in rats using a novel behavioral regimen that incorporated multiple sessions of extinction training and reinstatement testing.ResultsMass spectrometric imaging demonstrated widespread decreases in phospholipid (PL) abundance throughout the brain, and high-spatial resolution matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry indicated hippocampus-specific PL alterations following cocaine exposure. We analyzed the expression of genes involved in hippocampal lipid metabolism and observed region-specific regulation. In addition, we found that cocaine exposure differentially regulates mitochondrial biogenesis in the brain.ConclusionsThis work presents a comprehensive lipidomic assessment of cocaine-induced lipid remodeling in the rat brain. Further, these findings indicate a potential interplay between CNS energetics and differential lipid regulation and suggest a role for cocaine in the maintenance of energy homeostasis.
Project description:Cocaine addiction is a chronic, relapsing disease characterized by an inability to regulate drug-seeking behavior. Here we investigated the role of mGluR5 in the ventral and dorsal striatum in regulating cocaine-seeking following both abstinence and extinction. Animals underwent 2 weeks of cocaine self-administration followed by 3 weeks of home-cage abstinence. Animals were then reintroduced to the operant chamber for a context-induced relapse test, followed by 7-10 days of extinction training. Once responding was extinguished, cue-primed reinstatement test was conducted. Both drug-seeking tests were conducted in the presence of either mGluR5 negative allosteric modulator, MTEP or vehicle infused into either the nucleus accumbens (NA) core or dorsolateral striatum (dSTR). We found that MTEP infused in the NA core attenuated both context-induced relapse following abstinence and cue-primed reinstatement following extinction training. Blocking dSTR mGluR5 had no effect on context- or cue-induced cocaine-seeking. However, the intra-dSTR MTEP infusion on the context-induced relapse test day attenuated extinction learning for 4 days after the infusion. Furthermore, mGluR5 surface expression was reduced and LTD was absent in dSTR slices of animals undergoing 3 weeks of abstinence from cocaine but not sucrose self-administration. LTD was restored by bath application of VU-29, a positive allosteric modulator of mGluR5. Bath application of MTEP prevented the induction of LTD in dSTR slices from sucrose animals. Taken together, this data indicates that dSTR mGluR5 plays an essential role in extinction learning but not cocaine relapse, while NA core mGluR5 modulates drug-seeking following both extinction and abstinence from cocaine self-administration.
Project description:Infralimbic cortical (IL) manipulations indicate that this region mediates extinction learning and suppresses cocaine seeking following cocaine self-administration. However, little work has recorded IL activity during the inhibition of cocaine seeking due to the difficulty of determining precisely when cocaine-seeking behaviour is inhibited within a cocaine-seeking session. The present study used in vivo electrophysiology to examine IL activity across extinction as well as during cocaine self-administration and reinstatement. Sprague-Dawley rats underwent 6-h access cocaine self-administration in which the response lever was available during discrete signalled trials, a procedure which allowed for the comparison between epochs of cocaine seeking versus the inhibition thereof. Subsequently, rats underwent extinction and cocaine-primed reinstatement using the same procedure. Results indicate that theta rhythms (4-10 Hz) dominated IL local-field potential (LFP) activity during all experimental stages. During extinction, theta power fluctuated significantly surrounding the lever press and was lower when rats engaged in cocaine seeking versus when they withheld from doing so. These patterns of oscillatory activity differed from self-administration and reinstatement stages. Single-unit analyses indicate heterogeneity of IL unit responses, supporting the idea that multiple neuronal subpopulations exist within the IL and promote the expression of different and even opposing cocaine-seeking behaviours. Together, these results are consistent with the idea that aggregate synaptic and single-unit activity in the IL represent the engagement of the IL in action monitoring to promote adaptive behaviour in accordance with task contingencies and reveal critical insights into the relationship between IL activity and the inhibition of cocaine seeking.
Project description:The caudate putamen (CPu) has been implicated in habit learning and neuroadaptive changes that mediate the compulsive nature of drug-seeking following chronic cocaine self-administration. Re-exposure to an operant chamber previously associated with cocaine, but not yoked-saline, increases activity-regulated cytoskeleton-associated (Arc) gene mRNA expression within the dorsolateral (dl) CPu following prolonged abstinence. In this study, we tested the hypothesis that antisense gene knockdown of Arc within the dlCPu would alter cocaine-seeking. Initial studies showed that a single infusion of Arc antisense oligodeoxynucleotide (ODN) into the dlCPu significantly attenuated the induction of Arc mRNA and Arc protein by a single cocaine exposure (20 mg/kg i.p.) compared to scrambled-ODN-infused controls. In cocaine self-administering rats, infusion of Arc antisense ODN into the dlCPu 3 h prior to a test of context-driven drug-seeking significantly attenuated Arc protein induction, but failed to alter responding during testing, suggesting striatal Arc does not facilitate context-induced drug-seeking following prolonged abstinence. However, Arc antisense ODN infusion blunted the decrease in responding during subsequent 1-h extinction tests 24 and 48 h later. Following re-exposure to a cocaine-paired context, surface expression of the AMPA-type glutamate receptor GluR1 was significantly reduced whereas GluR2 was significantly increased in the dlCPu, independent of Arc antisense ODN infusion. Together, these findings indicate an important role for Arc in neuroadaptations within brain regions responsible for drug-seeking after abstinence and direct attention to changes occurring within striatal circuitry that are necessary to break down the habitual behaviour that leads to relapse.