Project description:Myo-inositol hexakisphosphate phosphohydrolases (i.e., phytases) are known to be a very important enzyme responsible for solubilization of insoluble phosphates. In the present study, Enterobacter phytases have characterized by different phylogenetic, structural and functional parameters using some standard bio-computational tools. Results showed that majority of the Enterobacter phytases are acidic in nature as most of the isoelectric points were under 7.0. The aliphatic indices predicted for the selected proteins were below 40 indicating their thermostable nature. The average molecular weight of the proteins was 48 kDa. The lower values of GRAVY of the said proteins implied that they have better interactions with water. Secondary structure prediction revealed that alpha-helical content was highest among the other forms such as sheets, coils, etc. Moreover, the predicted 3D structure of Enterobacter phytases divulged that the proteins consisted of four monomeric polypeptide chains i.e., it was a tetrameric protein. The predicted tertiary model of E. aerogenes (A0A0M3HCJ2) was deposited in Protein Model Database (Acc. No.: PM0080561) for further utilization after a thorough quality check from QMEAN and SAVES server. Functional analysis supported their classification as histidine acid phosphatases. Besides, multiple sequence alignment revealed that "DG-DP-LG" was the most highly conserved residues within the Enterobacter phytases. Thus, the present study will be useful in selecting suitable phytase-producing microbe exclusively for using in the animal food industry as a food additive.
Project description:A multi-interface domain is a domain that can shape multiple and distinctive binding sites to contact with many other domains, forming a hub in domain-domain interaction networks. The functions played by the multiple interfaces are usually different, but there is no strict bijection between the functions and interfaces as some subsets of the interfaces play the same function. This work applies graph theory and algorithms to discover fingerprints for the multiple interfaces of a domain and to establish associations between the interfaces and functions, based on a huge set of multi-interface proteins from PDB. We found that about 40% of proteins have the multi-interface property, however the involved multi-interface domains account for only a tiny fraction (1.8%) of the total number of domains. The interfaces of these domains are distinguishable in terms of their fingerprints, indicating the functional specificity of the multiple interfaces in a domain. Furthermore, we observed that both cooperative and distinctive structural patterns, which will be useful for protein engineering, exist in the multiple interfaces of a domain.
Project description:Annotating functional terms with individual domains is essential for understanding the functions of full-length proteins. We describe SDADB, a functional annotation database for structural domains. SDADB provides associations between gene ontology (GO) terms and SCOP domains calculated with an integrated framework. GO annotations are assigned probabilities of being correct, which are estimated with a Bayesian network by taking advantage of structural neighborhood mappings, SCOP-InterPro domain mapping information, position-specific scoring matrices (PSSMs) and sequence homolog features, with the most substantial contribution coming from high-coverage structure-based domain-protein mappings. The domain-protein mappings are computed using large-scale structure alignment. SDADB contains ontological terms with probabilistic scores for more than 214 000 distinct SCOP domains. It also provides additional features include 3D structure alignment visualization, GO hierarchical tree view, search, browse and download options.Database URL: http://sda.denglab.org.
Project description:Inteins, also called protein introns, are self-splicing mobile elements found in all domains of life. A bioinformatic survey of genomic data highlights a biased distribution of inteins among functional categories of proteins in both bacteria and archaea, with a strong preference for a single network of functions containing replisome proteins. Many nonorthologous, functionally equivalent replicative proteins in bacteria and archaea carry inteins, suggesting a selective retention of inteins in proteins of particular functions across domains of life. Inteins cluster not only in proteins with related roles but also in specific functional units of those proteins, like ATPase domains. This peculiar bias does not fully fit the models describing inteins exclusively as parasitic elements. In such models, evolutionary dynamics of inteins is viewed primarily through their mobility with the intein homing endonuclease (HEN) as the major factor of intein acquisition and loss. Although the HEN is essential for intein invasion and spread in populations, HEN dynamics does not explain the observed biased distribution of inteins among proteins in specific functional categories. We propose that the protein splicing domain of the intein can act as an environmental sensor that adapts to a particular niche and could increase the chance of the intein becoming fixed in a population. We argue that selective retention of some inteins might be beneficial under certain environmental stresses, to act as panic buttons that reversibly inhibit specific networks, consistent with the observed intein distribution.
Project description:BackgroundA range of endophenotypes characterise psychosis, however there has been limited work understanding if and how they are inter-related.MethodsThis multi-centre study includes 8754 participants: 2212 people with a psychotic disorder, 1487 unaffected relatives of probands, and 5055 healthy controls. We investigated cognition [digit span (N = 3127), block design (N = 5491), and the Rey Auditory Verbal Learning Test (N = 3543)], electrophysiology [P300 amplitude and latency (N = 1102)], and neuroanatomy [lateral ventricular volume (N = 1721)]. We used linear regression to assess the interrelationships between endophenotypes.ResultsThe P300 amplitude and latency were not associated (regression coef. -0.06, 95% CI -0.12 to 0.01, p = 0.060), and P300 amplitude was positively associated with block design (coef. 0.19, 95% CI 0.10-0.28, p 0.38). All the cognitive endophenotypes were associated with each other in the expected directions (all p < 0.001). Lastly, the relationships between pairs of endophenotypes were consistent in all three participant groups, differing for some of the cognitive pairings only in the strengths of the relationships.ConclusionsThe P300 amplitude and latency are independent endophenotypes; the former indexing spatial visualisation and working memory, and the latter is hypothesised to index basic processing speed. Individuals with psychotic illnesses, their unaffected relatives, and healthy controls all show similar patterns of associations between endophenotypes, endorsing the theory of a continuum of psychosis liability across the population.
Project description:Orthomyxovirus Influenza A virus (IAV) heterotrimeric polymerase performs transcription of viral mRNAs by cap-snatching, which involves generation of capped primers by host pre-mRNA binding via the PB2 subunit cap-binding site and cleavage 10-13 nucleotides from the 5' cap by the PA subunit endonuclease. Thogotoviruses, tick-borne orthomyxoviruses that includes Thogoto (THOV), Dhori (DHOV) and Jos (JOSV) viruses, are thought to perform cap-snatching by cleaving directly after the cap and thus have no heterogeneous, host-derived sequences at the 5' extremity of their mRNAs. Based on recent work identifying the cap-binding and endonuclease domains in IAV polymerase, we determined the crystal structures of two THOV PB2 domains, the putative cap-binding and the so-called '627-domain', and the structures of the putative endonuclease domains (PA-Nter) of THOV and DHOV. Despite low sequence similarity, corresponding domains have the same fold confirming the overall architectural similarity of orthomyxovirus polymerases. However the putative Thogotovirus cap-snatching domains in PA and PB2 have non-conservative substitutions of key active site residues. Biochemical analysis confirms that, unlike the IAV domains, the THOV and DHOV PA-Nter domains do not bind divalent cations and have no endonuclease activity and the THOV central PB2 domain does not bind cap analogues. On the other hand, sequence analysis suggests that other, non-influenza, orthomyxoviruses, such as salmon anemia virus (isavirus) and Quaranfil virus likely conserve active cap-snatching domains correlating with the reported occurrence of heterogeneous, host-derived sequences at the 5' end of the mRNAs of these viruses. These results highlight the unusual nature of transcription initiation by Thogotoviruses.
Project description:GeMMA (Genome Modelling and Model Annotation) is a new approach to automatic functional subfamily classification within families and superfamilies of protein sequences. A major advantage of GeMMA is its ability to subclassify very large and diverse superfamilies with tens of thousands of members, without the need for an initial multiple sequence alignment. Its performance is shown to be comparable to the established high-performance method SCI-PHY. GeMMA follows an agglomerative clustering protocol that uses existing software for sensitive and accurate multiple sequence alignment and profile-profile comparison. The produced subfamilies are shown to be equivalent in quality whether whole protein sequences are used or just the sequences of component predicted structural domains. A faster, heuristic version of GeMMA that also uses distributed computing is shown to maintain the performance levels of the original implementation. The use of GeMMA to increase the functional annotation coverage of functionally diverse Pfam families is demonstrated. It is further shown how GeMMA clusters can help to predict the impact of experimentally determining a protein domain structure on comparative protein modelling coverage, in the context of structural genomics.
Project description:The PIN (PilT N-terminus) domain is a compact RNA-binding protein domain present in all domains of life. This 120-residue domain consists of a central and parallel β sheet surrounded by α helices, which together organize 4-5 acidic residues in an active site that binds one or more divalent metal ions and in many cases has endoribonuclease activity. In bacteria and archaea, the PIN domain is primarily associated with toxin-antitoxin loci, consisting of a toxin (the PIN domain nuclease) and an antitoxin that inhibits the function of the toxin under normal growth conditions. During nutritional or antibiotic stress, the antitoxin is proteolytically degraded causing activation of the PIN domain toxin leading to a dramatic reprogramming of cellular metabolism to cope with the new situation. In eukaryotes, PIN domains are commonly found as parts of larger proteins and are involved in a range of processes involving RNA cleavage, including ribosomal RNA biogenesis and nonsense-mediated mRNA decay. In this review, we provide a comprehensive overview of the structural characteristics of the PIN domain and compare PIN domains from all domains of life in terms of structure, active site architecture, and activity.
Project description:Hammerhead ribozymes are small self-cleaving RNAs that promote strand scission by internal phosphoester transfer. Comparative sequence analysis was used to identify numerous additional representatives of this ribozyme class than were previously known, including the first representatives in fungi and archaea. Moreover, we have uncovered the first natural examples of "type II" hammerheads, and our findings reveal that this permuted form occurs in bacteria as frequently as type I and III architectures. We also identified a commonly occurring pseudoknot that forms a tertiary interaction critical for high-speed ribozyme activity. Genomic contexts of many hammerhead ribozymes indicate that they perform biological functions different from their known role in generating unit-length RNA transcripts of multimeric viroid and satellite virus genomes. In rare instances, nucleotide variation occurs at positions within the catalytic core that are otherwise strictly conserved, suggesting that core mutations are occasionally tolerated or preferred.
Project description:Ribosomal proteins are indispensable components of a living cell, and yet their structures are remarkably diverse in different species. Here we use manually curated structural alignments to provide a comprehensive catalog of structural variations in homologous ribosomal proteins from bacteria, archaea, eukaryotes, and eukaryotic organelles. By resolving numerous ambiguities and errors of automated structural and sequence alignments, we uncover a whole new class of structural variations that reside within seemingly conserved segments of ribosomal proteins. We then illustrate that these variations reflect an apparent adaptation of ribosomal proteins to the specific environments and lifestyles of living species. Finally, we show that most of these structural variations reside within nonglobular extensions of ribosomal proteins-protein segments that are thought to promote ribosome biogenesis by stabilizing the proper folding of ribosomal RNA. We show that although the extensions are thought to be the most ancient peptides on our planet, they are in fact the most rapidly evolving and most structurally and functionally diverse segments of ribosomal proteins. Overall, our work illustrates that, despite being long considered as slowly evolving and highly conserved, ribosomal proteins are more complex and more specialized than is generally recognized.