Project description:Cyclohexanone monooxygenase (CHMO) is a promising biocatalyst for industrial reactions owing to its broad substrate spectrum and excellent regio-, chemo-, and enantioselectivity. However, the low stability of many Baeyer-Villiger monooxygenases is an obstacle for their exploitation in industry. Characterization and crystal structure determination of a robust CHMO from Thermocrispum municipale is reported. The enzyme efficiently converts a variety of aliphatic, aromatic, and cyclic ketones, as well as prochiral sulfides. A compact substrate-binding cavity explains its preference for small rather than bulky substrates. Small-scale conversions with either purified enzyme or whole cells demonstrated the remarkable properties of this newly discovered CHMO. The exceptional solvent tolerance and thermostability make the enzyme very attractive for biotechnology.
Project description:CRISPR multiplex gRNA systems have been employed in genome engineering in various industrially relevant yeast species. The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 is an alternative host for heterologous protein production. However, the limited secretory capability of this yeast is a bottleneck for protein production. Here, we refined CRISPR-based genome engineering tools for simultaneous mutagenesis and activation of multiple protein secretory pathway genes to improve heterologous protein secretion. We demonstrated that multiplexed CRISPR-Cas9 mutation of up to four genes (SOD1, VPS1, YPT7 and YPT35) in one single cell is practicable. We also developed a multiplexed CRISPR-dCas9 system which allows simultaneous activation of multiple genes in this yeast. 27 multiplexed gRNA combinations were tested for activation of three genes (SOD1, VPS1 and YPT7), three of which were demonstrated to increase the secretion of fungal xylanase and phytase up to 29% and 41%, respectively. Altogether, our study provided a toolkit for mutagenesis and activation of multiple genes in O. thermomethanolica, which could be useful for future strain engineering to improve heterologous protein production in this yeast.
Project description:Cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871 is characterized as having wide substrate versatility for the biooxidation of (cyclic) ketones into esters and lactones with high stereospecificity. Despite industrial potential, CHMO usage is restricted by poor thermostability. Limited high-throughput screening tools and challenges in rationally engineering thermostability have impeded CHMO engineering efforts. We demonstrate the application of an aerobic, high-throughput growth selection platform in Escherichia coli (strain MX203) for the discovery of thermostability enhancing mutations for CHMO. The selection employs growth for the easy readout of CHMO activity in vivo, by requiring nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes to restore cellular redox balance. In the presence of the native substrate cyclohexanone, variant CHMO GV (A245G-A288V) was discovered from a random mutagenesis library screened at 42 °C. This variant retained native activity, exhibited ~4.4-fold improvement in residual activity after 30 °C incubation, and demonstrated ~5-fold higher cyclohexanone conversion at 37 °C compared to the wild type. Molecular modeling indicates that CHMO GV experiences more favorable residue packing and supports additional backbone hydrogen bonding. Further rational design resulted in CHMO A245G-A288V-T415C with improved thermostability at 45 °C. Our platform for oxygenase evolution enabled the rapid engineering of protein stability critical for industrial scalability.
Project description:Enzymes often by far exceed the activity, selectivity, and sustainability achieved with chemical catalysts. One of the main reasons for the lack of biocatalysis in the chemical industry is the poor stability exhibited by many enzymes when exposed to process conditions. This dilemma is exemplified in the usually very temperature-sensitive enzymes catalyzing the Baeyer-Villiger reaction, which display excellent stereo- and regioselectivity and offer a green alternative to the commonly used, explosive peracids. Here we describe a protein engineering approach applied to cyclohexanone monooxygenase from Rhodococcus sp. HI-31, a substrate-promiscuous enzyme that efficiently catalyzes the production of the nylon-6 precursor ε-caprolactone. We used a framework for rapid enzyme stabilization by computational libraries (FRESCO), which predicts protein-stabilizing mutations. From 128 screened point mutants, approximately half had a stabilizing effect, albeit mostly to a small degree. To overcome incompatibility effects observed upon combining the best hits, an easy shuffled library design strategy was devised. The most stable and highly active mutant displayed an increase in unfolding temperature of 13°C and an approximately 33x increase in half-life at 30°C. In contrast to the wild-type enzyme, this thermostable 8x mutant is an attractive biocatalyst for biotechnological applications.
Project description:BackgroundSome yeasts have evolved a methylotrophic lifestyle enabling them to utilize the single carbon compound methanol as a carbon and energy source. Among them, Pichia pastoris (syn. Komagataella sp.) is frequently used for the production of heterologous proteins and also serves as a model organism for organelle research. Our current knowledge of methylotrophic lifestyle mainly derives from sophisticated biochemical studies which identified many key methanol utilization enzymes such as alcohol oxidase and dihydroxyacetone synthase and their localization to the peroxisomes. C1 assimilation is supposed to involve the pentose phosphate pathway, but details of these reactions are not known to date.ResultsIn this work we analyzed the regulation patterns of 5,354 genes, 575 proteins, 141 metabolites, and fluxes through 39 reactions of P. pastoris comparing growth on glucose and on a methanol/glycerol mixed medium, respectively. Contrary to previous assumptions, we found that the entire methanol assimilation pathway is localized to peroxisomes rather than employing part of the cytosolic pentose phosphate pathway for xylulose-5-phosphate regeneration. For this purpose, P. pastoris (and presumably also other methylotrophic yeasts) have evolved a duplicated methanol inducible enzyme set targeted to peroxisomes. This compartmentalized cyclic C1 assimilation process termed xylose-monophosphate cycle resembles the principle of the Calvin cycle and uses sedoheptulose-1,7-bisphosphate as intermediate. The strong induction of alcohol oxidase, dihydroxyacetone synthase, formaldehyde and formate dehydrogenase, and catalase leads to high demand of their cofactors riboflavin, thiamine, nicotinamide, and heme, respectively, which is reflected in strong up-regulation of the respective synthesis pathways on methanol. Methanol-grown cells have a higher protein but lower free amino acid content, which can be attributed to the high drain towards methanol metabolic enzymes and their cofactors. In context with up-regulation of many amino acid biosynthesis genes or proteins, this visualizes an increased flux towards amino acid and protein synthesis which is reflected also in increased levels of transcripts and/or proteins related to ribosome biogenesis and translation.ConclusionsTaken together, our work illustrates how concerted interpretation of multiple levels of systems biology data can contribute to elucidation of yet unknown cellular pathways and revolutionize our understanding of cellular biology.
Project description:Enzyme stability is an important parameter in biocatalytic applications, and there is a strong need for efficient methods to generate robust enzymes. We investigated whether stabilizing disulfide bonds can be computationally designed based on a model structure. In our approach, unlike in previous disulfide engineering studies, short bonds spanning only a few residues were included. We used cyclohexanone monooxygenase (CHMO), a Baeyer-Villiger monooxygenase (BVMO) from Acinetobacter sp. NCIMB9871 as the target enzyme. This enzyme has been the prototype BVMO for many biocatalytic studies even though it is notoriously labile. After creating a small library of mutant enzymes with introduced cysteine pairs and subsequent screening for improved thermostability, three stabilizing disulfide bonds were identified. The introduced disulfide bonds are all within 12 Å of each other, suggesting this particular region is critical for unfolding. This study shows that stabilizing disulfide bonds do not have to span many residues, as the most stabilizing disulfide bond, L323C-A325C, spans only one residue while it stabilizes the enzyme, as shown by a 6 °C increase in its apparent melting temperature.
Project description:Hydrogen sulfide (H2 S) is an environmental toxin and a heritage of ancient microbial metabolism that has stimulated new interest following its discovery as a neuromodulator. While many physiological responses have been attributed to low H2 S levels, higher levels inhibit complex IV in the electron transport chain. To prevent respiratory poisoning, a dedicated set of enzymes that make up the mitochondrial sulfide oxidation pathway exists to clear H2 S. The committed step in this pathway is catalyzed by sulfide quinone oxidoreductase (SQOR), which couples sulfide oxidation to coenzyme Q10 reduction in the electron transport chain. The SQOR reaction prevents H2 S accumulation and generates highly reactive persulfide species as products; these can be further oxidized or can modify cysteine residues in proteins by persulfidation. Here, we review the kinetic and structural characteristics of human SQOR, and how its unconventional redox cofactor configuration and substrate promiscuity lead to sulfide clearance and potentially expand the signaling potential of H2 S. This dual role of SQOR makes it a promising target for H2 S-based therapeutics.
Project description:Lytic polysaccharide monooxygenases (LPMOs) can oxidatively break the glycosidic bonds of crystalline cellulose, providing more actionable sites for cellulase to facilitate the conversion of cellulose to cello-oligosaccharides, cellobiose and glucose. In this work, a bioinformatics analysis of BaLPMO10 revealed that it is a hydrophobic, stable and secreted protein. By optimizing the fermentation conditions, the highest protein secretion level was found at a IPTG concentration of 0.5 mM and 20 h of fermentation at 37 °C, with a yield of 20 mg/L and purity > 95%. The effect of metal ions on the enzyme activity of BaLPMO10 was measured, and it was found that 10 mM Ca2+ and Na+ increased the enzyme activity by 47.8% and 98.0%, respectively. However, DTT, EDTA and five organic reagents inhibited the enzyme activity of BaLPMO10. Finally, BaLPMO10 was applied in biomass conversion. The degradation of corn stover pretreated with different steam explosions was performed. BaLPMO10 and cellulase had the best synergistic degradation effect on corn stover pretreated at 200 °C for 12 min, improving reducing sugars by 9.2% compared to cellulase alone. BaLPMO10 was found to be the most efficient for ethylenediamine-pretreated Caragana korshinskii by degrading three different biomasses, increasing the content of reducing sugars by 40.5% compared to cellulase alone following co-degradation with cellulase for 48 h. The results of scanning electron microscopy revealed that BaLPMO10 disrupted the structure of Caragana korshinskii, making its surface coarse and poriferous, which increased the accessibility of other enzymes and thus promoted the process of conversion. These findings provide guidance for improving the efficiency of enzymatic digestion of lignocellulosic biomass.
Project description:Vanillin (4-hydroxy-3-methoxybenzaldehyde) is one of the most widely used food spices. Aimed at bio-vanillin green production, the natural materials were directly catalytically oxidized efficiently in one pot under low O2 pressure (0.035 MPa) in the presence of a non-noble metal oxidation combined catalyst (NiCo2O4/SiO2 nanoparticles), which showed remarkable advantages of a short synthetic route and less industrial waste. The catalytic system showed good universality to many natural substrates with nearly 100% conversion and 86.3% bio-vanillin yield. More importantly, carbon isotope ratio investigations were employed to verify the origin of the organic matter. One hundred percent 14C content of the obtained vanillin was detected, which indicated that it was an efficient method to distinguish the vanillin from biomass or fossil materials. Furthermore, the 13C isotope examination showed effective distinguishing ability for the vanillin from a particular biomass source. The C isotope detection provides an effective method for commercial vanillin identification.
Project description:The combination of redox enzymes for redox-neutral cascade reactions has received increasing appreciation. An example is the combination of an alcohol dehydrogenase (ADH) with a cyclohexanone monooxygenase (CHMO). The ADH can use NADP+ to oxidize cyclohexanol to form cyclohexanone and NADPH. Both products are then used by CHMO to produce ε-caprolactone. In this study, these two redox-complementary enzymes were fused, to create a self-sufficient bifunctional enzyme that can convert alcohols to esters or lactones. Three different ADH genes were fused to a gene coding for a thermostable CHMO, in both orientations (ADH-CHMO and CHMO-ADH). All six fusion enzymes could be produced and purified. For two of the three ADHs, we found a clear difference between the two orientations: one that showed the expected ADH activity, and one that showed low to no activity. The ADH activity of each fusion enzyme correlated with its oligomerization state. All fusions retained CHMO activity, and stability was hardly affected. The TbADH-TmCHMO fusion was selected to perform a cascade reaction, producing ε-caprolactone from cyclohexanol. By circumventing substrate and product inhibition, a > 99% conversion of 200 mM cyclohexanol could be achieved in 24 h, with > 13,000 turnovers per fusion enzyme molecule.