Project description:TThe molecular mechanisms responsible for the development of hepatic fibrosis are not fully understood. The Nlrc4 inflammasome detects cytosolic presence of bacterial components, activating inflammatory cytokines to facilitate clearance of pathogens and infected cells. We hypothesized that low-grade constitutive activation of the Nlrc4 inflammasome may lead to induced hepatocyte proliferation and prevent the development of hepatic fibrosis. The gene of Nlrc4 contains two single nucleotide polymorphisms (SNPs), one located within the Nlrc4 promoter and one contained within exon 5. These SNPs regulate Nlrc4 gene transcription and activation as measured through gene reporter assays and IL-1β secretion. The 17C-6 mice have increased IL-1β in plasma after chronic carbon tetrachloride (CCl4) administration compared to B6 mice. After two-thirds partial hepatectomy (2/3PH) 17C-6 mice have earlier restoration of liver mass with greater cyclin D1 protein and BrdU incorporation compared to B6 mice at several time points. These data reveal mild constitutive activation of the Nlrc4 inflammasome as the results of two SNPs, which leads to the stimulation of hepatocyte proliferation. The increased liver regeneration induces rapid liver mass recovery after hepatectomy and may prevent the development of hepatotoxin-induced liver fibrosis.
Project description:MethodsIn the present study, we investigated hepatic macrophage heterogeneity in murine liver regeneration after 2/3 PHx through immunofluorescence staining, fluorescence-activated cell sorting analysis, and quantitative reverse transcription-polymerase chain reaction.ResultsOur research showed that Kupffer cells reduced rapidly in the early PHx and restored gradually depending on local proliferation and replenishment from infiltrating monocyte-derived macrophages. The ratio of ly6Chi to ly6Clo subset of macrophages in the liver changed dynamically, and hepatic macrophage function exhibits a significant difference in different stages of liver regeneration. Moreover, blocking infiltrating monocyte-derived macrophage recruitment augmented Kupffer cell proliferation but impaired the restoration of the hepatic macrophage pool, which led to delayed hepatocyte mitosis and liver regeneration.ConclusionsOur data suggest that hepatic macrophage changes dynamically in origin and function during liver regeneration following PHx and macrophage-targeted liver regeneration should consider macrophage heterogeneity.
Project description:BackgroundPartial hepatectomy is a preferred treatment option for many patients with hepatocellular carcinoma however, pre-existing pathological abnormalities originating from hepatic steatosis can alter the decision to perform surgery or postoperative outcomes as a consequence of the impact steatosis has on liver regeneration.AimThe aim of this study was to investigate the role of a saturated or unsaturated high fat diet-mediated steatosis on liver regeneration following partial hepatectomy.MethodsMice were fed a low-fat control diet (CD, 13% fat), lard-based unsaturated (LD, 60% fat) or milk-based saturated high fat diet (MD, 60% fat) for 16 weeks at which time partial hepatectomy (approx. 70% resection) was performed. At days-2 and 7 post hepatectomy, one hour prior to euthanization, mice were injected with 5-bromo-2'-deoxyuridine in order to monitor hepatic regeneration. Serum was collected and assessed for levels of ALT and AST. Resected and regenerated liver tissue were examined for inflammation-indicative markers employing RT-PCR, Western blots, and histological methods.ResultsMice fed LD or MD exhibited higher NAFLD scores, increased expression of inflammatory cytokines, neutrophil infiltration, macrophage accumulation, increased apoptosis, and elevated levels of serum ALT and AST activities, a decrease in the number of BrdU-incorporated-hepatocytes in the regenerated livers compared to the mice fed CD. Mice fed MD showed significantly lower percent of BrdU-incorporated hepatocytes and a higher trend of inflammation compared to the mice fed LD.ConclusionA diet rich in saturated or unsaturated fat results in NASH with decreased hepatic regeneration however unsaturated fat diet cause lower inflammation and higher regeneration than the saturated fat diet following partial hepatectomy in mice.
Project description:UnlabelledLiver regeneration is impaired following partial hepatectomy (PH) in mice with genetic obesity and hepatic steatosis and also in wild-type mice fed a high-fat diet. These findings contrast with other data showing that liver regeneration is impaired in mice in which hepatic lipid accumulation is suppressed by either pharmacologic leptin administration or by disrupted glucocorticoid signaling. These latter findings suggest that hepatic steatosis may actually be required for normal liver regeneration. We have reexamined this relationship using several murine models of altered hepatic lipid metabolism. Liver fatty acid (FA) binding protein knockout mice manifested reduced hepatic triglyceride (TG) content compared to controls, with no effect on liver regeneration or hepatocyte proliferation. Examination of early adipogenic messenger RNAs revealed comparable induction in liver from both genotypes despite reduced hepatic steatosis. Following PH, hepatic TG was reduced in intestine-specific microsomal TG transfer protein deleter mice, which fail to absorb dietary fat, increased in peroxisome proliferator activated receptor alpha knockout mice, which exhibit defective FA oxidation, and unchanged (from wild-type mice) in liver-specific FA synthase knockout mice in which endogenous hepatic FA synthesis is impaired. Hepatic TG increased in the regenerating liver in all models, even in animals in which lipid accumulation is genetically constrained. However, in no model -- and over a >90-fold range of hepatic TG content -- was liver regeneration significantly impaired following PH.ConclusionAlthough hepatic TG content is widely variable and increases during liver regeneration, alterations in neither exogenous or endogenous lipid metabolic pathways, demonstrated to promote or diminish hepatic steatosis, influence hepatocyte proliferation.
Project description:This SuperSeries is composed of the following subset Series: GSE20425: Hepatic gene expression during liver regeneration in response to partial hepatectomy: early time points (0.5h,1h,2h,4h) GSE20426: Hepatic gene expression during liver regeneration in response to partial hepatectomy: late time points (24h, 38h, 48h) Refer to individual Series
Project description:Introduction: The liver is the only organ capable of full regeneration in mammals. However, the exact mechanism of gut microbiota and metabolites derived from them relating to liver regeneration has not been fully elucidated. Methods: To demonstrate how the gut-liver axis contributes to liver regeneration, using an LC-QTOF/MS-based metabolomics technique, we examine the gut microbiota-derived metabolites in the gut content of C57BL/6J mice at various points after 2/3 partial hepatectomy (PHx). Compound identification, multivariate/univariate data analysis and pathway analysis were performed subsequently. The diversity of the bacterial communities in the gastrointestinal content was measured using 16S rRNA gene sequencing. Then, the integration analysis of gut microbiota and metabolome was performed. Results: After 2/3 PHx, the residual liver proliferated quickly in the first 3 days and had about 90% of its initial weight by the seventh day. The results of PLS-DA showed that a significant metabolic shift occurred at 6 h and 36 h after 2/3 PHx that was reversed at the late phase of liver regeneration. The α and β-diversity of the gut microbiota significantly changed at the early stage of liver regeneration. Specifically, Escherichia Shigella, Lactobacillus, Akkermansia, and Muribaculaceae were the bacteria that changed the most considerably during liver regeneration. Further pathway analysis found the most influenced co-metabolized pathways between the host and gut bacteria including glycolysis, the TCA cycle, arginine metabolism, glutathione metabolism, tryptophan metabolism, and purine and pyrimidine metabolism. Specifically, steroid hormone biosynthesis is the most significant pathway of the host during liver regeneration. Discussion: These findings revealed that during liver regeneration, there was a broad modification of gut microbiota and systemic metabolism and they were strongly correlated. Targeting specific gut bacterial strains, especially increasing the abundance of Akkermansia and decreasing the abundance of Enterobacteriaceae, may be a promising beneficial strategy to modulate systemic metabolism such as amino acid and nucleotide metabolism and promote liver regeneration.
Project description:The resectable liver volume is strictly limited and this reduces the number of patients who may be treated. Recently, "tissue/organ decellularization", a new approach in bioengineering, has been investigated for its ability to produce a native organ scaffold by removing all the viable cells. Such a scaffold may support the repair of damaged or injured tissue. The purpose of this study was to evaluate the potential contribution of liver scaffolds to hepatic regeneration after hepatectomy. We sutured the partial liver scaffolds onto the surfaces of partially hepatectomized porcine livers and assessed their therapeutic potential by immune histological analysis at various time points. Animals were sacrificed after surgery and the implanted scaffolds were evaluated for the infiltration of various types of cells. Immune histochemical study showed that blood vessel-like structures, covered with CD31 positive endothelial cells and ALB positive cells, were present in all parts of the scaffolds at days 10 and 28. Blood inflow was observed in some of these ductal structures. More interestingly, CK19 and EpCAM positive cells appeared at day 10. These results suggest that the implantation of a decellularized organ scaffold could promote structural reorganization after liver resection.
Project description:While significant progress has been made in understanding different aspects of liver regeneration, the molecular mechanisms responsible for the initiation and termination of cell proliferation in the liver after massive loss or injury of liver tissue remain unknown. The loss of liver mass affects tissue-specific mitogenic inhibitors in the blood, which in turn regulate the proliferation of remaining hepatocytes and liver regeneration. Although well described in a number of publications, which inhibitory substances or "sensor molecules" control the regeneration mechanisms to properly maintain liver size remain unknown. Extracellular vesicles (EVs) are nano-sized, membrane-limited structures secreted by cells into the extracellular space. Their proposed role is stable intercellular carriers of proteins and RNAs, mostly micro-RNA, from secreted to recipient cells. Taken up by the recipient cells, EVs can significantly modulate their biological functions. In the present study, using in vivo and in vitro models, we demonstrate that hepatocyte proliferation and liver regeneration are regulated by EVs secreted by hepatocytes into the bloodstream. This regulation is carried out through a negative feedback mechanism, which explains the very precise regeneration of liver tissue after massive damage. We also demonstrate that an essential component of this mechanism is RNA carried by hepatocyte-derived EVs. These findings open up a new and unexplored area of biology regarding the mechanisms involved in the homeostasis regulation of various constantly renewing tissues by maintaining the optimal size and correct ratio between differentiating and proliferating cells.
Project description:Understanding the molecular mechanisms of liver regeneration is essential to improve the survival rate of patients after surgical resection of large amounts of liver tissue. Focal adhesion kinase (FAK) regulates different cellular functions, including cell survival, proliferation and cell migration. The role of FAK in liver regeneration remains unknown. In this study, we found that Fak is activated and induced during liver regeneration after two-thirds partial hepatectomy (PHx). We used mice with liver-specific deletion of Fak and investigated the role of Fak in liver regeneration in 2/3 PHx model (removal of 2/3 of the liver). We found that specific deletion of Fak accelerates liver regeneration. Fak deletion enhances hepatocyte proliferation prior to day 3 post-PHx but attenuates hepatocyte proliferation 3 days after PHx. Moreover, we demonstrated that the deletion of Fak in liver transiently increases EGFR activation by regulating the TNFα/HB-EGF axis during liver regeneration. Furthermore, we found more apoptosis in Fak-deficient mouse livers compared to WT mouse livers after PHx.ConclusionOur data suggest that Fak is involved in the process of liver regeneration, and inhibition of FAK may be a promising strategy to accelerate liver regeneration in recipients after liver transplantation.