Project description:Cryptosporidiosis in an enteric infection caused by Cryptosporidium parasites and is a major cause of acute infant diarrhea in the developing world. A major bottleneck to research progress is the lack of methods to cryopreserve Cryptosporidium oocysts, thus requiring routine propagation in laboratory animals. Here, we report a method to cryopreserve C. parvum oocysts by ultra-fast cooling. Cryopreserved oocysts exhibit high viability and robust in vitro excystation, and are infectious to interferon-γ knockout mice. The course of the infection is comparable to what we observe with unfrozen oocysts. Oocyst viability and infectivity is not visibly changed after several weeks of cryogenic storage. Cryopreservation will facilitate the sharing of oocysts from well-characterized isolates and transgenic strains among different laboratories.
Project description:BackgroundNon-human primates are often infected with human-pathogenic Cryptosporidium hominis subtypes, but rarely with Cryptosporidium parvum. In this study, 1452 fecal specimens were collected from farmed crab-eating macaques (Macaca fascicularis) in Hainan, China during the period April 2016 to January 2018. These specimens were analyzed for Cryptosporidium species and subtypes by using PCR and sequence analysis of the 18S rRNA and 60 kDa glycoprotein (gp60) genes, respectively.ResultsAltogether, Cryptosporidium was detected using 18S rRNA-based PCR in 132 (9.1%) sampled animals, with significantly higher prevalence in females (12.5% or 75/599 versus 6.1% or 43/706), younger animals (10.7% or 118/1102 in monkeys 1-3-years-old versus 4.0% or 14/350 in those over 3-years-old) and animals with diarrhea (12.6% or 46/365 versus 7.9% or 86/1087). Four Cryptosporidium species were identified, namely C. hominis, C. parvum, Cryptosporidium muris and Cryptosporidium ubiquitum in 86, 30, 15 and 1 animal, respectively. The identified C. parvum, C. hominis and C. ubiquitum were further subtyped by using gp60 PCR. Among them, C. parvum belonged to subtypes in two known subtype families, namely IIoA14G1 (in 18 animals) and IIdA19G1 (in 2 animals). In contrast, C. hominis mostly belonged to two new subtype families Im and In, which are genetically related to Ia and Id, respectively. The C. hominis subtypes identified included ImA18 (in 38 animals), InA14 (in six animals), InA26 (in six animals), InA17 (in one animal) and IiA17 (in three animals). The C. ubiquitum isolates belonged to subtype family XIId. By subtype, ImA18 and IIoA14G1 were detected in animals with diarrhea whereas the remaining ones were mostly found in asymptomatic animals. Compared with C. parvum and C. muris, higher oocyst shedding intensity was observed in animals infected with C. hominis, especially those infected with the Im subtype family.ConclusionsData from the study suggest that crab-eating macaques are infected with diverse C. parvum and C. hominis subtypes. The C. parvum IIo subtype family previously seen in rodents in China has apparently expanded its host range.
Project description:Cryptosporidium parvum and Cryptosporidium hominis are two related species of apicomplexan protozoa responsible for the majority of human cases of cryptosporidiosis. In spite of their considerable public health impact, little is known about the population structures of these species. In this study, a battery of C. parvum and C. hominis isolates from seven countries was genotyped using a nine-locus DNA subtyping scheme. To assess the existence of geographical partitions, the multilocus genotype data were mined using a cluster analysis based on the nearest-neighbor principle. Within each country, the population genetic structures were explored by combining diversity statistical tests, linkage disequilibrium, and eBURST analysis. For both parasite species, a quasi-complete phylogenetic segregation was observed among the countries. Cluster analysis accurately identified recently introduced isolates. Rather than conforming to a strict paradigm of either a clonal or a panmictic population structure, data are consistent with a flexible reproductive strategy characterized by the cooccurrence of both propagation patterns. The relative contribution of each pattern appears to vary between the regions, perhaps dependent on the prevailing ecological determinants of transmission.
Project description:Cryptosporidium hominis is a serious cause of childhood diarrhea in developing countries. The development of therapeutics is impeded by major technical roadblocks including lack of cryopreservation and simple culturing methods. This impacts the availability of optimized/standardized singular sources of infectious parasite oocysts for research and human challenge studies. The human C. hominis TU502 isolate is currently propagated in gnotobiotic piglets in only one laboratory, which limits access to oocysts. Streamlined cryopreservation could enable creation of a biobank to serve as an oocyst source for research and distribution to other investigators requiring C. hominis. Here, we report cryopreservation of C. hominis TU502 oocysts by vitrification using specially designed specimen containers scaled to 100 μL volume. Thawed oocysts exhibit ~70% viability with robust excystation and 100% infection rate in gnotobiotic piglets. The availability of optimized/standardized sources of oocysts may streamline drug and vaccine evaluation by enabling wider access to biological specimens.
Project description:Cryptosporidium parvum and C. hominis are related protozoan pathogens which infect the intestinal epithelium of humans and other vertebrates. To explore the evolution of these parasites, and identify genes under positive selection, we performed a pairwise whole-genome comparison between all orthologous protein coding genes in C. parvum and C. hominis. Genome-wide calculation of the ratio of nonsynonymous versus synonymous nucleotide substitutions (dN/dS) was performed to detect the impact of positive and purifying selection. Of 2465 pairs of orthologous genes, a total of 27 (1.1%) showed a high ratio of nonsynonymous substitutions, consistent with positive selection. A majority of these genes were annotated as hypothetical proteins. In addition, proteins with transmembrane and signal peptide domains are significantly more frequent in the high dN/dS group.
Project description:Cryptosporidiosis is a worldwide diarrheal disease caused by the protozoan Cryptosporidium. The primary symptom is diarrhea, but patients may exhibit different symptoms based on the species of the Cryptosporidium parasite they are infected with. Furthermore, some genotypes within species are more transmissible and apparently virulent than others. The mechanisms underpinning these differences are not understood, and an effective in vitro system for Cryptosporidium culture would help advance our understanding of these differences. Using COLO-680N cells, we employed flow cytometry and microscopy along with the C. parvum-specific antibody Sporo-Glo™ to characterize infected cells 48 h following an infection with C. parvum or C. hominis. The Cryptosporidium parvum-infected cells showed higher levels of signal using Sporo-Glo™ than C. hominis-infected cells, which was likely because Sporo-Glo™ was generated against C. parvum. We found a subset of cells from infected cultures that expressed a novel, dose-dependent auto-fluorescent signal that was detectable across a range of wavelengths. The population of cells that expressed this signal increased proportionately to the multiplicity of infection. The spectral cytometry results confirmed that the signature of this subset of host cells closely matched that of oocysts present in the infectious ecosystem, pointing to a parasitic origin. Present in both C. parvum and C. hominis cultures, we named this Sig M, and due to its distinct profile in cells from both infections, it could be a better marker for assessing Cryptosporidium infection in COLO-680N cells than Sporo-Glo™. We also noted Sig M’s impact on Sporo-Glo™ detection as Sporo-Glo™ uses fluoroscein–isothiocynate, which is detected where Sig M also fluoresces. Lastly, we used NanoString nCounter® analysis to investigate the transcriptomic landscape for the two Cryptosporidium species, assessing the gene expression of 144 host and parasite genes. Despite the host gene expression being at high levels, the levels of putative intracellular Cryptosporidium gene expression were low, with no significant difference from controls, which could be, in part, explained by the abundance of uninfected cells present as determined by both Sporo-Glo™ and Sig M analyses. This study shows for the first time that a natural auto-fluorescent signal, Sig M, linked to Cryptosporidium infection can be detected in infected host cells without any fluorescent labeling strategies and that the COLO-680N cell line and spectral cytometry could be useful tools to advance the understanding of Cryptosporidium infectivity.
Project description:Cryptosporidium hominis and Cryptosporidium parvum are associated with massive disease outbreaks worldwide. Because these two species have different transmission cycles, identification of these parasites to the species level in clinical samples may provide laboratory data of crucial importance in epidemiologic investigations. To date, the most reliable way to differentiate C. hominis and C. parvum is based on DNA sequencing analysis of PCR amplicons. Although this approach is very effective for differentiation of Cryptosporidium species, it is labor-intensive and time-consuming compared with methods that do not require DNA sequencing analysis as an additional step and that have been successfully used for specific identification of a number of pathogens. In this study, we describe a novel Luminex-based assay that can differentiate C. hominis from C. parvum in a rapid and cost-effective manner. The assay was validated by testing a total of 143 DNA samples extracted from clinical specimens, environmental samples, or samples artificially spiked with Cryptosporidium oocysts. As few as 10 oocysts per 300 microl of stools could be detected with this assay. The assay format includes species-specific probes linked to carboxylated Luminex microspheres that hybridize to a Cryptosporidium microsatellite-2 region (ML-2) where C. hominis and C. parvum differ by one nucleotide substitution. The assay proved to be 100% specific when samples that had been characterized by direct fluorescent antibody test (DFA) and DNA sequencing analysis were tested. In addition, the assay was more sensitive than DFA and provided species identification, which is an advantage for epidemiologic studies.
Project description:Due to its extensive polymorphism, a partial sequence of the Cryptosporidium surface glycoprotein gene gp60 has been frequently used as a genetic marker. I explored the global diversity of this protein, and compared its sequence diversity in Cryptosporidium parvum and Cryptosporidium hominis. In marked contrast to the geographical partition of C. parvum and C. hominis multi-locus genotypes, gp60 allelic groups showed no evidence of segregating in space, or of differing with respect to geographical diversity. Globally, genetic diversity of C. hominis gp60 exceeded that of C. parvum. Within C. parvum, gp60 alleles originating from human isolates were more diverse than those infecting ruminants. Phylogenetic analysis grouped gp60 sequences into a small number of relatively homogenous allelic groups, with only a small number of alleles having evolved independently. With the notable exception of a group of alleles restricted to humans, C. parvum alleles are found in ruminants and humans.
Project description:BackgroundWhole genome sequencing (WGS) of Cryptosporidium spp. has previously relied on propagation of the parasite in animals to generate enough oocysts from which to extract DNA of sufficient quantity and purity for analysis. We have developed and validated a method for preparation of genomic Cryptosporidium DNA suitable for WGS directly from human stool samples and used it to generate 10 high-quality whole Cryptosporidium genome assemblies. Our method uses a combination of salt flotation, immunomagnetic separation (IMS), and surface sterilisation of oocysts prior to DNA extraction, with subsequent use of the transposome-based Nextera XT kit to generate libraries for sequencing on Illumina platforms. IMS was found to be superior to caesium chloride density centrifugation for purification of oocysts from small volume stool samples and for reducing levels of contaminant DNA.ResultsThe IMS-based method was used initially to sequence whole genomes of Cryptosporidium hominis gp60 subtype IbA10G2 and Cryptosporidium parvum gp60 subtype IIaA19G1R2 from small amounts of stool left over from diagnostic testing of clinical cases of cryptosporidiosis. The C. parvum isolate was sequenced to a mean depth of 51.8X with reads covering 100 % of the bases of the C. parvum Iowa II reference genome (Bioproject PRJNA 15586), while the C. hominis isolate was sequenced to a mean depth of 34.7X with reads covering 98 % of the bases of the C. hominis TU502 v1 reference genome (Bioproject PRJNA 15585). The method was then applied to a further 17 stools, successfully generating another eight new whole genome sequences, of which two were C. hominis (gp60 subtypes IbA10G2 and IaA14R3) and six C. parvum (gp60 subtypes IIaA15G2R1 from three samples, and one each of IIaA17G1R1, IIaA18G2R1, and IIdA22G1), demonstrating the utility of this method to sequence Cryptosporidium genomes directly from clinical samples. This development is especially important as it reduces the requirement to propagate Cryptosporidium oocysts in animal models prior to genome sequencing.ConclusionThis represents the first report of high-quality whole genome sequencing of Cryptosporidium isolates prepared directly from human stool samples.
Project description:Background. Nowadays, most of the C. parvum and C. hominis epidemiological studies are based on gp60 gene subtyping using the Sanger sequencing (SgS) method. Unfortunately, SgS presents the limitation of being unable to detect mixed infections. Next-Generation Sequencing (NGS) seems to be an interesting solution to overcome SgS limits. Thus, the aim of our study was to (i) evaluate the reliability of NGS as a molecular typing tool for cryptosporidiosis, (ii) investigate the genetic diversity of the parasite and the frequency of mixed infections, (iii) assess NGS usefulness in Cryptosporidium sp. outbreak investigations, and (iv) assess an interpretation threshold of sequencing data. Methods. 108 DNA extracts from positive samples were sequenced by NGS. Among them, two samples were used to validate the reliability of the subtyping obtained by NGS and its capacity to detect DNA mixtures. In parallel, 106 samples from French outbreaks were used to expose NGS to epidemic samples. Results. NGS proved suitable for Cryptosporidium sp. subtyping at the gp60 gene locus, bringing more genetic information compared to SgS, especially by working on many samples simultaneously and detecting more diversity. Conclusions. This study confirms the usefulness of NGS applied to C. hominis and C. parvum epidemiological studies, especially aimed at detecting minority variants.