Project description:Rapid development and wide applications of nanotechnology brought about a significant increment on the number of engineered nanomaterials (ENs) inevitably entering our living system. Plants comprise of a very important living component of the terrestrial ecosystem. Studies on the influence of engineered nanomaterials (carbon and metal/metal oxides based) on plant growth indicated that in the excess content, engineered nanomaterials influences seed germination. It assessed the shoot-to-root ratio and the growth of the seedlings. From the toxicological studies to date, certain types of engineered nanomaterials can be toxic once they are not bound to a substrate or if they are freely circulating in living systems. It is assumed that the different types of engineered nanomaterials affect the different routes, behavior, and the capability of the plants. Furthermore, different, or even opposing conclusions, have been drawn from most studies on the interactions between engineered nanomaterials with plants. Therefore, this paper comprehensively reviews the studies on the different types of engineered nanomaterials and their interactions with different plant species, including the phytotoxicity, uptakes, and translocation of engineered nanomaterials by the plant at the whole plant and cellular level.
Project description:To reveal the integrative biochemical networks of wheat leaves in response to water deficient conditions, proteomics and metabolomics were applied to two spring-wheat cultivars (Bahar, drought-susceptible; Kavir, drought-tolerant). Drought stress induced detrimental effects on Bahar leaf proteome, resulting in a severe decrease of total protein content, with impairments mainly in photosynthetic proteins and in enzymes involved in sugar and nitrogen metabolism, as well as in the capacity of detoxifying harmful molecules. On the contrary, only minor perturbations were observed at the protein level in Kavir stressed leaves. Metabolome analysis indicated amino acids, organic acids, and sugars as the main metabolites changed in abundance upon water deficiency. In particular, Bahar cv showed increased levels in proline, methionine, arginine, lysine, aromatic and branched chain amino acids. Tryptophan accumulation via shikimate pathway seems to sustain auxin production (indoleacrylic acid), whereas glutamate reduction is reasonably linked to polyamine (spermine) synthesis. Kavir metabolome was affected by drought stress to a less extent with only two pathways significantly changed, one of them being purine metabolism. These results comprehensively provide a framework for better understanding the mechanisms that govern plant cell response to drought stress, with insights into molecules that can be used for crop improvement projects.
Project description:In this study, we investigated the effects of molybdenum (Mo)-based nanofertilizer and copper (Cu)-based nanopesticide exposure on wheat through a multifaceted approach, including physiological measurements, metal uptake and translocation analysis, and targeted proteomics analysis. Wheat plants were grown under a 16 h photoperiod (light intensity 150 μmol·m-2·s-1) for 4 weeks at 22 °C and 60% humidity with 6 different treatments, including control, Mo, and Cu exposure through root and leaf. The exposure dose was 6.25 mg of element per plant through either root or leaf. An additional low-dose (0.6 mg Mo/plant) treatment of Mo through root was added after phytotoxicity was observed. Using targeted proteomics approach, 24 proteins involved in 12 metabolomic pathways were quantitated to understand the regulation at the protein level. Mo exposure, particularly through root uptake, induced significant upregulation of 16 proteins associated with 11 metabolic pathways, with the fold change (FC) ranging from 1.28 to 2.81. Notably, a dose-dependent response of Mo exposure through the roots highlighted the delicate balance between nutrient stimulation and toxicity as a high Mo dose led to robust protein upregulation but also resulted in depressed physiological measurements, while a low Mo dose resulted in no depression of physiological measurements but downregulations of proteins, especially in the first leaf (0.23 < FC < 0.68) and stem (0.13 < FC < 0.68) tissues. Conversely, Cu exposure exhibited tissue-specific effects, with pronounced downregulation (18 proteins involved in 11 metabolic pathways) particularly in the first leaf tissues (root exposure: 0.35 < FC < 0.74; leaf exposure: 0.49 < FC < 0.72), which indicated the quick response of plants to Cu-induced stress in the early stage of exposure. By revealing the complexities of plants' response to engineered nanomaterials at both physiological and molecular levels, this study provides insights for optimizing nutrient management practices in crop production and advancing toward sustainable agriculture.
Project description:The interaction of nanomaterials with biomolecules, cells, and organisms is an enormously vital area of current research, with applications in nanoenabled diagnostics, imaging agents, therapeutics, and contaminant removal technologies. Yet the potential for adverse biological and environmental impacts of nanomaterial exposure is considerable and needs to be addressed to ensure sustainable development of nanomaterials. In this Outlook four research needs for the next decade are outlined: (i) measurement of the chemical nature of nanomaterials in dynamic, complex aqueous environments; (ii) real-time measurements of nanomaterial-biological interactions with chemical specificity; (iii) delineation of molecular modes of action for nanomaterial effects on living systems as functions of nanomaterial properties; and (iv) an integrated systems approach that includes computation and simulation across orders of magnitude in time and space.
Project description:Proteomic data from engineered nanomaterial- treated THP-1 cells. Time points at 12 hours; 4 biological replicates for each treatment. Human THP-1 cells were either mock-treated (control) or treated with engineered nanomaterials (ENMs). Four biological replicates were used for each sample group (Control, or ENM treatment at either the low or high dosage). In the block design scheme for LC-MS analysis, samples treated with two different ENMs were assign into an analytical block (2 ENM X 2 dosages/ENM X 4 replicates = 16 samples). Four control samples were also included in each block, yielding 20 samples per block. Blocks of samples were divided into two processing batches. Samples in each batch were processed simultaneously from cell culture, to treatment with ENMs, and finally to proteomic sample preparation for LC-MS analysis (including trypsin digestion).
Project description:C57BL/6 mice were exposed by oropharyngeal aspiration to 28 nanomaterials including different surface functionalizations on 4 concecutive days with the dose of 10ug/day. Total RNA was collected from the mice lung biopsies after sacrificing.
Project description:Bell pepper plants are sensitive to environmental changes and are significantly affected by abiotic factors such as UV-B radiation and cold, which reduce their yield and production. Various approaches, including omics data integration, have been employed to understand the mechanisms by which this crop copes with abiotic stress. This study aimed to find metabolic changes in bell pepper stems caused by UV-B radiation and cold by integrating omic data. Proteome and metabolome profiles were generated using liquid chromatography coupled with mass spectrometry, and data integration was performed in the plant metabolic pathway database. The combined stress of UV-B and cold induced the accumulation of proteins related to photosynthesis, mitochondrial electron transport, and a response to a stimulus. Further, the production of flavonoids and their glycosides, as well as affecting carbon metabolism, tetrapyrrole, and scopolamine pathways, were identified. We have made the first metabolic regulatory network map showing how bell pepper stems respond to cold and UV-B stress. We did this by looking at changes in proteins and metabolites that help with respiration, photosynthesis, and the buildup of photoprotective and antioxidant compounds.
Project description:In the last decade, the bacterial pathogen Xylella fastidiosa has devastated olive trees throughout Apulia region (Southern Italy) in the form of the disease called "Olive Quick Decline Syndrome" (OQDS). This study describes changes in the metabolic profile due to the infection by X. fastidiosa subsp. pauca ST53 in artificially inoculated young olive plants of the susceptible variety Cellina di Nardò. The test plants, grown in a thermo-conditioned greenhouse, were also co-inoculated with some xylem-inhabiting fungi known to largely occur in OQDS-affected trees, in order to partially reproduce field conditions in terms of biotic stress. The investigations were performed by combining NMR spectroscopy and MS spectrometry with a non-targeted approach for the analysis of leaf extracts. Statistical analysis revealed that Xylella-infected plants were characterized by higher amounts of malic acid, formic acid, mannitol, and sucrose than in Xylella-non-infected ones, whereas it revealed slightly lower amounts of oleuropein. Attention was paid to mannitol which may play a central role in sustaining the survival of the olive tree against bacterial infection. This study contributes to describe a set of metabolites playing a possible role as markers in the infections by X. fastidiosa in olive.
Project description:Current approaches for nanomaterial delivery in plants are unable to target specific subcellular compartments with high precision, limiting our ability to engineer plant function. We demonstrate a nanoscale platform that targets and delivers nanomaterials with biochemicals to plant photosynthetic organelles (chloroplasts) using a guiding peptide recognition motif. Quantum dot (QD) fluorescence emission in a low background window allows confocal microscopy imaging and quantitative detection by elemental analysis in plant cells and organelles. QD functionalization with β-cyclodextrin molecular baskets enables loading and delivery of diverse chemicals, and nanoparticle coating with a rationally designed and conserved guiding peptide targets their delivery to chloroplasts. Peptide biorecognition provides high delivery efficiency and specificity of QD with chemical cargoes to chloroplasts in plant cells in vivo (74.6 ± 10.8%) and more specific tunable changes of chloroplast redox function than chemicals alone. Targeted delivery of nanomaterials with chemical cargoes guided by biorecognition motifs has a broad range of nanotechnology applications in plant biology and bioengineering, nanoparticle-plant interactions, and nano-enabled agriculture.
Project description:BackgroundEngineered nanomaterials (ENMs) have potential benefits, but they also present safety concerns for human health. Interlaboratory studies in rodents using standardized protocols are needed to assess ENM toxicity.MethodsFour laboratories evaluated lung responses in C57BL/6 mice to ENMs delivered by oropharyngeal aspiration (OPA), and three labs evaluated Sprague-Dawley (SD) or Fisher 344 (F344) rats following intratracheal instillation (IT). ENMs tested included three forms of titanium dioxide (TiO2) [anatase/rutile spheres (TiO2-P25), anatase spheres (TiO2-A), and anatase nanobelts (TiO2-NBs)] and three forms of multiwalled carbon nanotubes (MWCNTs) [original (O), purified (P), and carboxylic acid "functionalized" (F)]. One day after treatment, bronchoalveolar lavage fluid was collected to determine differential cell counts, lactate dehydrogenase (LDH), and protein. Lungs were fixed for histopathology. Responses were also examined at 7 days (TiO2 forms) and 21 days (MWCNTs) after treatment.ResultsTiO2-A, TiO2-P25, and TiO2-NB caused significant neutrophilia in mice at 1 day in three of four labs. TiO2-NB caused neutrophilia in rats at 1 day in two of three labs, and TiO2-P25 and TiO2-A had no significant effect in any of the labs. Inflammation induced by TiO2 in mice and rats resolved by day 7. All MWCNT types caused neutrophilia at 1 day in three of four mouse labs and in all rat labs. Three of four labs observed similar histopathology to O-MWCNTs and TiO2-NBs in mice.ConclusionsENMs produced similar patterns of neutrophilia and pathology in rats and mice. Although interlaboratory variability was found in the degree of neutrophilia caused by the three types of TiO2 nanoparticles, similar findings of relative potency for the three types of MWCNTs were found across all laboratories, thus providing greater confidence in these interlaboratory comparisons.