Project description:The availability of genome-wide association studies (GWASs) for human blood metabolome provides an excellent opportunity for studying metabolism in a heritable disease such as migraine. Utilizing GWAS summary statistics, we conduct comprehensive pairwise genetic analyses to estimate polygenic genetic overlap and causality between 316 unique blood metabolite levels and migraine risk. We find significant genome-wide genetic overlap between migraine and 44 metabolites, mostly lipid and organic acid metabolic traits (FDR < 0.05). We also identify 36 metabolites, mostly related to lipoproteins, that have shared genetic influences with migraine at eight independent genomic loci (posterior probability > 0.9) across chromosomes 3, 5, 6, 9, and 16. The observed relationships between genetic factors influencing blood metabolite levels and genetic risk for migraine suggest an alteration of metabolite levels in individuals with migraine. Our analyses suggest higher levels of fatty acids, except docosahexaenoic acid (DHA), a very long-chain omega-3, in individuals with migraine. Consistently, we found a causally protective role for a longer length of fatty acids against migraine. We also identified a causal effect for a higher level of a lysophosphatidylethanolamine, LPE(20:4), on migraine, thus introducing LPE(20:4) as a potential therapeutic target for migraine.
Project description:Chronic postsurgical pain (CPSP) is a debilitating chronic pain condition that has a substantial effect on quality of life. CPSP shows considerable clinical overlap with different chronic peripheral pain syndromes, suggesting a shared aetiology. This study aims to assess the genetic overlap between different chronic pain syndromes and CPSP, providing relevant biological context for potential chronic pain markers of CPSP. To analyse the genetic overlap between CPSP and chronic peripheral pain syndromes, recent GWAS studies were combined for polygenic risk scores (PRS) analysis, using a cohort of CPSP patients as starting point. Biological contextualisation of genetic marker, overlap between CPSP and chronic pain syndromes, was assessed through Gene Ontology (GO), using Pathway Scoring Algorithm (PASCAL) and REVIGO. PRS analyses suggest a significant genetic overlap between CPSP and 3 chronic pain disorders: chronic widespread pain (CWP, p value threshold = 0.003, R2 0.06, p = 0.003), rheumatoid arthritis (RA, p value threshold = 0.0177, R2 = 0.04, p = 0.017) and possibly sciatica (p value threshold = 0.00025, R2 = 0.03, p = 0.045). Whereas no significant genetic overlap was found with cluster headache and migraine, the outcome for osteoarthritis (OA) was inconsistent between the cohorts. This is likely related to cohort composition, as repeated random reallocation of patients' nullified CPSP/OA outcome variation between the discovery and replication cohorts. GO analyses suggested an aetiological involvement of genetic markers that control neurological signalling (specifically sodium channels) and inflammatory response. The current study reaffirms the impact of sample size, cohort composition and open data accessibility on the unbiased identification of genetic overlap across disorders. In conclusion, this study is the first to report genetic overlap between regulatory processes implicated in CPSP and chronic peripheral pain syndromes. Interaction between neurological signalling and inflammatory response may explain the genetic overlap between CPSP, CWP and RA. Enhanced understanding of mechanisms underlying chronification of pain will aid the development of new therapeutic strategies for CPSP with sodium channel biochemistry as a potential candidate.
Project description:Attention-deficit/hyperactivity disorder (ADHD) is a severely impairing neurodevelopmental disorder with a prevalence of 5% in children and adolescents and of 2.5% in adults. Comorbid conditions in ADHD play a key role in symptom progression, disorder course and outcome. ADHD is associated with a significantly increased risk for substance use, abuse and dependence. ADHD and cannabis use are partly determined by genetic factors; the heritability of ADHD is estimated at 70-80% and of cannabis use initiation at 40-48%. In this study, we used summary statistics from the largest available meta-analyses of genome-wide association studies (GWAS) of ADHD (n = 53,293) and lifetime cannabis use (n = 32,330) to gain insights into the genetic overlap and causal relationship of these two traits. We estimated their genetic correlation to be r2 = 0.29 (P = 1.63 × 10-5) and identified four new genome-wide significant loci in a cross-trait analysis: two in a single variant association analysis (rs145108385, P = 3.30 × 10-8 and rs4259397, P = 4.52 × 10-8) and two in a gene-based association analysis (WDPCP, P = 9.67 × 10-7 and ZNF251, P = 1.62 × 10-6). Using a two-sample Mendelian randomization approach we found support that ADHD is causal for lifetime cannabis use, with an odds ratio of 7.9 for cannabis use in individuals with ADHD in comparison to individuals without ADHD (95% CI (3.72, 15.51), P = 5.88 × 10-5). These results substantiate the temporal relationship between ADHD and future cannabis use and reinforce the need to consider substance misuse in the context of ADHD in clinical interventions.
Project description:BackgroundBlood plasma proteins have been associated with Alzheimer's disease (AD), but understanding which proteins are on the causal pathway remains challenging.ObjectiveInvestigate the genetic overlap between candidate proteins and AD using polygenic risk scores (PRS) and interrogate their causal relationship using bi-directional Mendelian randomization (MR).MethodsFollowing a literature review, 31 proteins were selected for PRS analysis. PRS were constructed for prioritized proteins with and without the apolipoprotein E region (APOE+/-PRS) and tested for association with AD status across three cohorts (n = 6,244). An AD PRS was also tested for association with protein levels in one cohort (n = 410). Proteins showing association with AD were taken forward for MR.ResultsFor APOE ɛ3, apolipoprotein B-100, and C-reactive protein (CRP), protein APOE+ PRS were associated with AD below Bonferroni significance (pBonf, p < 0.00017). No protein APOE- PRS or AD PRS (APOE+/-) passed pBonf. However, vitamin D-binding protein (protein PRS APOE-, p = 0.009) and insulin-like growth factor-binding protein 2 (AD APOE- PRS p = 0.025, protein APOE- PRS p = 0.045) displayed suggestive signals and were selected for MR. In bi-directional MR, none of the five proteins demonstrated a causal association (p < 0.05) in either direction.ConclusionApolipoproteins and CRP PRS are associated with AD and provide a genetic signal linked to a specific, accessible risk factor. While evidence of causality was limited, this study was conducted in a moderate sample size and provides a framework for larger samples with greater statistical power.
Project description:ObjectiveTo identify whether there exists a genetic correlation and causal relationship between 25(OH)D and autism spectrum disorder (ASD).MethodsBased on large-scale genome-wide association studies, a series of genetic approaches were adopted to obtain summary statistics. Using linkage disequilibrium score regression, we assessed the shared polygenic structure between traits and performed pleiotropic analysis under composite null hypothesis (PLACO) to identify pleiotropic loci between complex traits. A bidirectional Mendelian randomization (MR) analysis was applied to investigate whether there is a causal relationship between 25(OH)D and ASD.ResultsThe linkage disequilibrium score regression (LDSC) showed a negative genetic correlation between 25(OH)D and ASD (rg = - 0.227, P < 0.05), and PLACO analysis identified 20 independent pleiotropic loci matched to 24 pleiotropic genes, of which the function reveals an underlying mechanism on 25(OH)D and ASD. In Mendelian randomization analysis, the inverse variance-weighted (IVW) method with OR = 0.941 (0.796, 1.112) and p < 0.474 did not show a causal relationship between 25(OH)D and ASD, while, in the reverse Mendelian randomization analysis, IVW method showed OR = 1.042 (0.930, 1.169), indicating no causal relationship either.ConclusionThis study provides evidence for a shared genetic overlap between 25(OH)D and ASD. Bidirectional MR analysis also did not show a definite causal relationship between 25(OH)D and ASD.
Project description:Brain-derived neurotrophic factor (BDNF) disturbances and life stress, both independently and in interaction, have been hypothesized to induce chronic pain. We examined whether (a) the BDNF pathway (val(66)met genotype, gene expression, and serum levels), (b) early and recent life stress, and (c) their interaction are associated with the presence and severity of chronic multi-site musculoskeletal pain. Cross-sectional data are from 1646 subjects of the Netherlands Study of Depression and Anxiety. The presence and severity of chronic multi-site musculoskeletal pain were determined using the Chronic Pain Grade (CPG) questionnaire. The BDNF val(66)met polymorphism, BDNF gene expression, and BDNF serum levels were measured. Early life stress before the age of 16 was assessed by calculating a childhood trauma index using the Childhood Trauma Interview. Recent life stress was assessed as the number of recent adverse life events using the List of Threatening Events Questionnaire. Compared to val(66)val, BDNF met carriers more often had chronic pain, whereas no differences were found for BDNF gene expression and serum levels. Higher levels of early and recent stress were both associated with the presence and severity of chronic pain (p < 0.001). No interaction effect was found for the BDNF pathway with life stress in the associations with chronic pain presence and severity. This study suggests that the BDNF gene marks vulnerability for chronic pain. Although life stress did not alter the impact of BDNF on chronic pain, it seems an independent factor in the onset and persistence of chronic pain.
Project description:Chronic pain has become a global health problem contributing to years lived with disability and reduced quality of life. Advances in the clinical management of chronic pain have been limited due to incomplete understanding of the multiple risk factors and molecular mechanisms that contribute to the development of chronic pain. The Acute to Chronic Pain Signatures (A2CPS) Program aims to characterize the predictive nature of biomarkers (brain imaging, high-throughput molecular screening techniques, or "omics," quantitative sensory testing, patient-reported outcome assessments and functional assessments) to identify individuals who will develop chronic pain following surgical intervention. The A2CPS is a multisite observational study investigating biomarkers and collective biosignatures (a combination of several individual biomarkers) that predict susceptibility or resilience to the development of chronic pain following knee arthroplasty and thoracic surgery. This manuscript provides an overview of data collection methods and procedures designed to standardize data collection across multiple clinical sites and institutions. Pain-related biomarkers are evaluated before surgery and up to 3 months after surgery for use as predictors of patient reported outcomes 6 months after surgery. The dataset from this prospective observational study will be available for researchers internal and external to the A2CPS Consortium to advance understanding of the transition from acute to chronic postsurgical pain.
Project description:BackgroundChronic pain imposes a large burden on individuals and society. A patient-centric digital chronic pain management app called Manage My Pain (MMP) can be used to enhance communication between providers and patients and promote self-management.ObjectiveThe purpose of this study was to evaluate the real-world engagement of patients in urban and rural settings in Ontario, Canada with the MMP app alongside their standard of care and assess the impact of its usage on clinical outcomes of pain and related mental health.MethodsA total of 246 participants with chronic pain at a rural and 2 urban pain clinics were recruited into this prospective, open-label, exploratory study that compared the use of MMP, a digital health app for pain that incorporates validated questionnaires and provides patients with summarized reports of their progress in combination with standard care (app group), against data entered on paper-based questionnaires (nonapp group). Participants completed validated questionnaires on anxiety, depression, pain catastrophizing, satisfaction, and daily opioid consumption up to 4.5 months after the initial visit (short-term follow-up) and between 4.5 and 7 months after the initial visit (long-term follow-up). Engagement and clinical outcomes were compared between participants in the two groups.ResultsA total of 73.6% (181/246) of the participants agreed to use the app, with 63.4% (111/175) of them using it for at least one month. Individuals who used the app rated lower anxiety (reduction in Generalized Anxiety Disorder 7-item questionnaire score by 2.10 points, 95% CI -3.96 to -0.24) at short-term follow-up and had a greater reduction in pain catastrophizing (reduction in Pain Catastrophizing Scale score by 5.23 points, 95% CI -9.55 to -0.91) at long-term follow-up relative to patients with pain who did not engage with the MMP app.ConclusionsThe use of MMP by patients with chronic pain is associated with engagement and improvements in self-reported anxiety and pain catastrophizing. Further research is required to understand factors that impact continued engagement and clinical outcomes in patients with chronic pain.Trial registrationClinicalTrials.gov NCT04762329; https://clinicaltrials.gov/ct2/show/NCT04762329.
Project description:ObjectiveCOVID-19 might cause neuroinflammation in the brain, which could decrease neurocognitive function. We aimed to evaluate the causal associations and genetic overlap between COVID-19 and intelligence.MethodsWe performed Mendelian randomization (MR) analyses to assess potential associations between three COVID-19 outcomes and intelligence (N = 269 867). The COVID phenotypes included severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (N = 2 501 486), hospitalized COVID-19 (N = 1 965 329) and critical COVID-19 (N = 743 167). Genome-wide risk genes were compared between the genome-wide association study (GWAS) datasets on hospitalized COVID-19 and intelligence. In addition, functional pathways were constructed to explore molecular connections between COVID-19 and intelligence.ResultsThe MR analyses indicated that genetic liabilities to SARS-CoV-2 infection (odds ratio [OR]: 0.965, 95% confidence interval [CI]: 0.939-0.993) and critical COVID-19 (OR: 0.989, 95% CI: 0.979-0.999) confer causal effects on intelligence. There was suggestive evidence supporting the causal effect of hospitalized COVID-19 on intelligence (OR: 0.988, 95% CI: 0.972-1.003). Hospitalized COVID-19 and intelligence share 10 risk genes within 2 genomic loci, including MAPT and WNT3. Enrichment analysis showed that these genes are functionally connected within distinct subnetworks of 30 phenotypes linked to cognitive decline. The functional pathway revealed that COVID-19-driven pathological changes within the brain and multiple peripheral systems may lead to cognitive impairment.ConclusionsOur study suggests that COVID-19 may exert a detrimental effect on intelligence. The tau protein and Wnt signaling may mediate the influence of COVID-19 on intelligence.
Project description:Posttraumatic stress (PTS), depressive symptoms (DS), and musculoskeletal pain (MSP) are common sequelae of trauma exposure. Although these adverse posttraumatic neuropsychiatric sequelae (APNS) are often studied separately, clinical comorbidity is high. In a cohort of European American motor vehicle collision (MVC) trauma survivors (n = 781), substantial PTS (≥33, IES-R), DS (≥26, CES-D), and MSP (≥4, 0-10 NRS) were identified via a 6-month survey. Genetic risk was estimated using polygenic risk scores (PRSs) calculated from the largest available GWAS datasets of PTSD, MDD, and back pain. We then assessed comorbidity and genetic risk influence for developing chronic PTS, DS, and MSP after MVC. Secondary analyses explored whether common social determinants of health ameliorate genetic vulnerability. We found that 6 months after MVC, nearly half 357/781 (46%) of the participants had substantial PTS, DS, and/or MSP, and overlap was common (PTS + MSP (23%), DS + MSP (18%), PTS + DS (12%)). Genetic risk predicted post-MVC outcomes. PTSD-PRSs predicted PTS and DS (R2 = 2.21% and 2.77%, padj < 0.01), MDD-PRSs predicted DS and MSP (R2 = 1.89%, padj < 0.01) and 0.79%, padj < 0.05), and back pain-PRS predicted MSP (R2 = 1.49%, padj < 0.01). Individuals in the highest quintile of PTSD-PRSs had 2.8 and 3.5 times the odds of developing PTS and DS vs. the lowest quintile (95% CI = 1.39-5.75 and 1.58-7.76). Among these high-risk individuals, those living in non-disadvantaged neighborhoods and with college education had 47% (p = 0.048) and 52% (p = 0.04) less risk of developing PTS, and those with high social support had 60% (p = 0.008) less risk of developing DS. Overall, genetic factors influence the risk of APNS after MVC, genetic risk of distinct APNS are overlapping, and specific social determinants greatly augment genetic risk of APNS development after MVC.