Project description:BackgroundRhododendron chrysanthum Pall., an endangered species with significant ornamental and medicinal value, is endemic to the Changbai Mountain of China and can also serve as a significant plant resource for investigating the stress tolerance in plants. Proteomics is an effective analytical tool that provides significant information about plant metabolism and gene expression. However, no proteomics data have been reported for R. chrysanthum previously. In alpine tundra, the abiotic stress will lead to a severe over-accumulation of reactive oxygen species (ROS). Many alpine plants overcome the severe stresses and protect themselves from the oxidative damage by increasing the ratio and activity of antioxidant enzymes.ResultsIn our study, wild type and domesticated Rhododendron chrysanthum Pall. were used as experimental and control groups, respectively. Proteomics method combined with biochemical approach were applied for the stress tolerance investigation of R. chrysanthum at both protein and molecular level. A total of 1,395 proteins were identified, among which 137 proteins were up-regulate in the experimental group. The activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidases (APXs), and glutathione peroxidase (GPX) were significantly higher and the expression of APXs and GPX were also increased in the experimental group. Moreover, the interaction network analysis of these enzymes also reveals that the antioxidant enzymes play important roles in the stress resistance in plants.ConclusionsThis is the first report of the proteome of Rhododendron chrysanthum Pall., and the data reinforce the notion that the antioxidant system plays a significant role in plant stress survival. Our results also verified that R. chrysanthum is highly resistant to abiotic stress and can serve as a significant resource for investigating stress tolerance in plants.ReviewersThis article was reviewed by George V. (Yura) Shpakovski and Ramanathan Sowdhamini.
Project description:Increased UV-B radiation due to ozone depletion adversely affects plants. This study focused on the metabolite dynamics of Rhododendron chrysanthum Pall. (R. chrysanthum) and the role of ABA in mitigating UV-B stress. Chlorophyll fluorescence metrics indicated that both JA and ABA increased UV-B resistance; however, the effect of JA was not as strong as that of ABA. Metabolomic analysis using UPLC-MS/MS (ultra-performance liquid chromatography and tandem mass spectrometry) revealed significant fluctuations in metabolites under UV-B and ABA application. UV-B decreased amino acids and increased phenolics, suggesting antioxidant defense activation. ABA treatment upregulated lipids and phenolic acids, highlighting its protective role. Multivariate analysis showed distinct metabolic clusters and pathways responding to UV-B and ABA, which impacted amino acid metabolism and hormone signal transduction. Exogenous ABA negatively regulated the JA signaling pathway in UV-B-exposed R. chrysanthum, as shown by KEGG enrichment. This study deepens understanding of plant stress-tolerance mechanisms and has implications for enhancing plant stress tolerance through metabolic and hormonal interventions.
Project description:The plant defense system is immediately triggered by UV-B irradiation, particularly the production of metabolites and enzymes involved in the UV-B response. Although substantial research on UV-B-related molecular responses in Arabidopsis has been conducted, comparatively few studies have examined the precise consequences of direct UV-B treatment on R. chrysanthum. The ultra-high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) methodology and TMT quantitative proteomics are used in this study to describe the metabolic response of R. chrysanthum to UV-B radiation and annotate the response mechanism of the primary metabolism and phenolic metabolism of R. chrysanthum. The outcomes demonstrated that following UV-B radiation, the primary metabolites (L-phenylalanine and D-lactose*) underwent considerable changes to varying degrees. This gives a solid theoretical foundation for investigating the use of precursor substances, such as phenylalanine, to aid plants in overcoming abiotic stressors. The external application of ABA produced a considerable increase in the phenolic content and improved the plants' resistance to UV-B damage. Our hypothesis is that externally applied ABA may work in concert with UV-B to facilitate the transformation of primary metabolites into phenolic compounds. This hypothesis offers a framework for investigating how ABA can increase a plant's phenolic content in order to help the plant withstand abiotic stressors. Overall, this study revealed alterations and mechanisms of primary and secondary metabolic strategies in response to UV-B radiation.
Project description:The presence of the ozone hole increases the amount of UV radiation reaching a plant's surface, and UV-B radiation is an abiotic stress capable of affecting plant growth. Rhododendron chrysanthum Pall. (R. chrysanthum) grows in alpine regions, where strong UV-B radiation is present, and has been able to adapt to strong UV-B radiation over a long period of evolution. We investigated the response of R. chrysanthum leaves to UV-B radiation using widely targeted metabolomics and transcriptomics. Although phytohormones have been studied for many years in plant growth and development and adaptation to environmental stresses, this paper is innovative in terms of the species studied and the methods used. Using unique species and the latest research methods, this paper was able to add information to this topic for the species R. chrysanthum. We treated R. chrysanthum grown in a simulated alpine environment, with group M receiving no UV-B radiation and groups N and Q (externally applied abscisic acid treatment) receiving UV-B radiation for 2 days (8 h per day). The results of the MN group showed significant changes in phenolic acid accumulation and differential expression of genes related to phenolic acid synthesis in leaves of R. chrysanthum after UV-B radiation. We combined transcriptomics and metabolomics data to map the metabolic regulatory network of phenolic acids under UV-B stress in order to investigate the response of such secondary metabolites to stress. L-phenylalanine, L-tyrosine and phenylpyruvic acid contents in R. chrysanthum were significantly increased after UV-B radiation. Simultaneously, the levels of 3-hydroxyphenylacetic acid, 2-phenylethanol, anthranilate, 2-hydroxycinnamic acid, 3-hydroxycinnamic acid, α-hydroxycinnamic acid and 2-hydroxy-3-phenylpropanoic acid in this pathway were elevated in response to UV-B stress. In contrast, the study in the NQ group found that externally applied abscisic acid (ABA) in R. chrysanthum had greater tolerance to UV-B radiation, and phenolic acid accumulation under the influence of ABA also showed greater differences. The contents of 2-phenylethanol, 1-o-p-coumaroyl-β-d-glucose, 2-hydroxy-3-phenylpropanoic acid, 3-(4-hydroxyphenyl)-propionic acid and 3-o-feruloylquinic ac-id-o-glucoside were significantly elevated in R. chrysanthum after external application of ABA to protect against UV-B stress. Taken together, these studies of the three groups indicated that ABA can influence phenolic acid production to promote the response of R. chrysanthum to UV-B stress, which provided a theoretical reference for the study of its complex molecular regulatory mechanism.
Project description:The influence of UV-B stress on the growth, development, and metabolism of alpine plants, such as the damage to DNA macromolecules, the decline in photosynthetic rate, and changes in growth, development, and morphology cannot be ignored. As an endogenous signal molecule, ABA demonstrates a wide range of responses to UV-B radiation, low temperature, drought, and other stresses. The typical effect of ABA on leaves is to reduce the loss of transpiration by closing the stomata, which helps plants resist abiotic and biological stress. The Changbai Mountains have a harsh environment, with low temperatures and thin air, so Rhododendron chrysanthum (R. chrysanthum) seedlings growing in the Changbai Mountains can be an important research object. In this study, a combination of physiological, phosphorylated proteomic, and transcriptomic approaches was used to investigate the molecular mechanisms by which abiotic stress leads to the phosphorylation of proteins in the ABA signaling pathway, and thereby mitigates UV-B radiation to R. chrysanthum. The experimental results show that a total of 12,289 differentially expressed genes and 109 differentially phosphorylated proteins were detected after UV-B stress in R. chrysanthum, mainly concentrated in plant hormone signaling pathways. Plants were treated with ABA prior to exposure to UV-B stress, and the results showed that ABA mitigated stomatal changes in plants, thus confirming the key role of endogenous ABA in plant adaptation to UV-B. We present a model that suggests a multifaceted R. chrysanthum response to UV-B stress, providing a theoretical basis for further elaboration of the mechanism of ABA signal transduction regulating stomata to resist UV-B radiation.
Project description:In order to fully elucidate the roles and systems of phytohormones in UV-B radiation (UV-B) leaves of the Rhododendron chrysanthum Pall. (R. chrysanthum), we conducted a comprehensive analysis of how R. chrysanthum protects itself against UV-B using transcriptomic and metabolomic data. Transcript and metabolite profiles were generated by a combination of deep sequencing and LC-MS/MS (liquid chromatography-tandem mass spectrometry), respectively. Combined with physiological and biochemical assays, we studied compound accumulation, biosynthesis and expression of signaling genes of seven hormones and the effects of hormones on plant photosynthesis. The findings indicate that during leaf defense against UV-B, photosynthesis declined, the photosynthetic system was impaired and the concentration of salicylic acid (SA) hormones increased, whereas the contents of cytokinin (CK), abscisic acid (ABA), ethylene, auxin, jasmonic acid (JA) and gibberellins (GAs) continued to decrease. Finally, correlation tests between hormone content and genes were analyzed, and genes closely related to leaf resistance to UV-B were identified in seven pathways. These results will expand our understanding of the hormonal regulatory mechanisms of plant resistance to UV-B and at the same time lay the foundation for plant resistance to adversity stress.
Project description:Ultraviolet-B (UV-B) radiation is a significant environmental factor influencing the growth and development of plants. MYBs play an essential role in the processes of plant responses to abiotic stresses. In the last few years, the development of transcriptome and acetylated proteome technologies have resulted in further and more reliable data for understanding the UV-B response mechanism in plants. In this research, the transcriptome and acetylated proteome were used to analyze Rhododendron chrysanthum Pall. (R. chrysanthum) leaves under UV-B stress. In total, 2348 differentially expressed genes (DEGs) and 685 differentially expressed acetylated proteins (DAPs) were found. The transcriptome analysis revealed 232 MYB TFs; we analyzed the transcriptome together with the acetylated proteome, and screened 4 MYB TFs. Among them, only RcMYB44 had a complete MYB structural domain. To investigate the role of RcMYB44 under UV-B stress, a homology tree was constructed between RcMYB44 and Arabidopsis MYBs, and it was determined that RcMYB44 shares the same function with ATMYB44. We further constructed the hormone signaling pathway involved in RcMYB44, revealing the molecular mechanism of resistance to UV-B stress in R. chrysanthum. Finally, by comparing the transcriptome and the proteome, it was found that the expression levels of proteins and genes were inconsistent, which is related to post-translational modifications of proteins. In conclusion, RcMYB44 of R. chrysanthum is involved in mediating the growth hormone, salicylic acid, jasmonic acid, and abscisic acid signaling pathways to resist UV-B stress.
Project description:Under natural environmental conditions, excess UV-B stress can cause serious injuries to plants. However, domestication conditions may allow the plant to better cope with the upcoming UV-B stress. The leaves of Rhododendron chrysanthum are an evergreen plant that grows at low temperatures and high altitudes in the Changbai Mountains, where the harsh ecological environment gives it different UV resistance properties. Metabolites in R. chrysanthum have a significant impact on UV-B resistance, but there are few studies on the dynamics of their material composition and gene expression levels. We used a combination of gas chromatography time-of-flight mass spectrometry and transcriptomics to analyze domesticated and undomesticated R. chrysanthum under UV-B radiation. A total of 404 metabolites were identified, of which amino acids were significantly higher and carbohydrates were significantly lower in domesticated R. chrysanthum. Transcript profiles throughout R. chrysanthum under UV-B were constructed and analyzed, with an emphasis on sugar and amino acid metabolism. The transcript levels of genes associated with sucrose and starch metabolism during UV-B resistance in R. chrysanthum showed a consistent trend with metabolite content, while amino acid metabolism was the opposite. We used metabolomics and transcriptomics approaches to obtain dynamic changes in metabolite and gene levels during UV-B resistance in R. chrysanthum. These results will provide some insights to elucidate the molecular mechanisms of UV tolerance in plants.
Project description:Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) is a key enzyme of the Calvin cycle, which is responsible for most of Earth's primary production. Although research on RubisCO genes and enzymes in plants, cyanobacteria and bacteria has been ongoing for years, still little is understood about its regulation and activation in bacteria. Even more so, hardly any information exists about the function of metagenomic RubisCOs and the role of the enzymes encoded on the flanking DNA owing to the lack of available function-based screens for seeking active RubisCOs from the environment. Here we present the first solely activity-based approach for identifying RubisCO active fosmid clones from a metagenomic library. We constructed a metagenomic library from hydrothermal vent fluids and screened 1056 fosmid clones. Twelve clones exhibited RubisCO activity and the metagenomic fragments resembled genes from Thiomicrospira crunogena. One of these clones was further analyzed. It contained a 35.2 kb metagenomic insert carrying the RubisCO gene cluster and flanking DNA regions. Knockouts of twelve genes and two intergenic regions on this metagenomic fragment demonstrated that the RubisCO activity was significantly impaired and was attributed to deletions in genes encoding putative transcriptional regulators and those believed to be vital for RubisCO activation. Our new technique revealed a novel link between a poorly characterized gene and RubisCO activity. This screen opens the door to directly investigating RubisCO genes and respective enzymes from environmental samples.