Project description:PurposeThe overexpression of TRIP13 has been observed in many types of cancer and has been identified as an oncogene. However, its role in hepatocellular carcinoma (HCC) has not been extensively studied. This study aimed to investigate the expression of TRIP13 in HCC and its impact on immune cell infiltration and prognosis.MethodsWe analyzed TCGA and GSE62232 datasets to assess TRIP13 expression in HCC. Kaplan-Meier and subgroup analysis were performed to examine the correlation between TRIP13 expression and HCC. Univariate and Cox regression analysis were conducted to determine the predictive value of TRIP13 in assessing patient outcomes. A nomogram was developed using TRIP13 mRNA expression to predict HCC prognosis. TRIP13 expression was validated using immunohistochemistry in our patient cohort. Survival and subgroup analyses were conducted to investigate the role of TRIP13 in HCC prognosis.ResultsThe results indicated that TRIP13 upregulation in HCC was a strong independent predictor of poor outcome, as determined by Kaplan-Meier and Cox regression analyses. A high AUC value of 0.982 from ROC curves suggested that TRIP13 upregulation could serve as a reliable diagnostic indicator for HCC. The immunohistochemical validation of TRIP13 expression in the patient cohort confirmed its prognostic significance, and high TRIP13 expression was found to be associated with increased infiltration of Th2 cells and decreased infiltration of neutrophils, Th17 cells, and dendritic cells.ConclusionThese findings suggest that TRIP13 could be a potential prognostic biomarker for HCC.
Project description:Objective: This study aimed to validate FANCI as a potential marker for both prognosis and therapy in liver hepatocellular carcinoma. Method: FANCI expression data were acquired from GEPIA, HPA, TCGA, and GEO databases. The impact of clinicopathological features was analyzed by UALCAN. The prognosis of Liver Hepatocellular Carcinoma (LIHC) patients with highly expressed FANCI was constructed utilizing Kaplan-Meier Plotter. GEO2R was employed to identify differentially expressed genes (DEGs). Metascape was used to analyze functional pathways correlations. Protein-Protein interaction (PPI) networks were generated by Cytoscape. Furthermore, molecular complex detection (MCODE) was utilized to recognize Hub genes, which were selected to establish a prognostic model. Lastly, the relationship between FANCI and immune cell infiltration in LIHC was examined. Results: Compared to adjacent tissues, FANCI expression levels were significantly higher in LIHC tissues and were positively correlated to the cancer grade, stage, and prior hepatitis B virus (HBV) infection. High expression of FANCI was found to be associated with poor prognosis in LIHC (HR=1.89, p<0.001). DEGs that were positively correlated with FANCI were involved in various processes, including the cell cycle, VEGF pathway, immune system processes, and biogenesis of ribonucleoproteins. MCM10, TPX2, PRC1, and KIF11 were identified as key genes closely related to FANCI and poor prognosis. A reliable five-variable prognostic model was constructed with strong predictive capability. Lastly, a positive correlation was observed between FANCI expression and tumor-infiltration levels of CD8+ T cells, B cells, regulatory T (Tregs), CD4+ T helper 2 (Th2), and macrophage M2 cells. Conclusion: FANCI may hold promise as a potential biomarker for predicting prognostic outcomes, and a valuable therapeutic target for LIHC patients, with a focus on anti-proliferation, anti-chemoresistance, and combination with immunotherapy.
Project description:Solute Carrier Family 38 Member 1 (SLC38A1) is a principal transporter of glutamine and plays a crucial role in the transformation of neoplastic cells. However, the correlation between SLC38A1 expression, prognosis, and immune infiltration in hepatocellular carcinoma (HCC) has yet to be elucidated. We used two independent patient cohorts, namely, a Cancer Genome Atlas (TCGA) cohort and a Clinical Proteomic Tumor Analysis Consortium (CPTAC) cohort, to analyze the role of SLC38A1 in HCC at the mRNA and protein levels, respectively. In these two cohorts, SLC38A1 mRNA and protein expression levels were higher in HCC tissues than in adjacent nontumor tissues. Both SLC38A1 mRNA and protein expression were positively associated with clinicopathological characteristics (clinical stage, T stage, pathological grade, tumor size, and tumor thrombus), were negatively associated with survival, and were independent prognostic factors in HCC patients. Functional enrichment analyses further indicated that SLC38A1 was involved in multiple pathways related to amino acid metabolism, tumors, and immunity. High expression levels of SLC38A1 were inversely proportional to CD8+ T cells and directly proportional to macrophages M0, neutrophils, programmed cell death-1/programmed cell death ligand 1 (PD-1/PD-L1), and cytotoxic T lymphocyte-associated protein 4 (CTLA-4). Moreover, we used immunohistochemical analysis of tissue samples and other online databases to further validate the expression levels and prognostic significance of SLC38A1 in HCC. Collectively, our study demonstrated that the upregulated expression of SLC38A1 was related to an unfavorable prognosis and defective immune infiltration in HCC.
Project description:Lung cancer is one of the most common malignancies with a high mortality rate worldwide. POSTN has been shown to be strongly correlated with the poor prognosis of lung cancer patients. However, the function and mechanism of action of POSTN in lung cancer remain unclear. Here, we carried out a pan-cancer analysis to assess the clinical prognostic value of POSTN based on the TCGA, TIMER, Oncomine, Kaplan-Meier, and UALCAN databases. We found that upregulated POSTN can be a promising biomarker to predict the prognosis of patients with lung cancer. High levels of POSTN correlated with immune cell infiltration in lung cancer, especially lung squamous cell carcinoma (LUSC), which was further confirmed based on the results from the TISIDB database. Moreover, the expression analysis, correlation analysis, and survival analysis revealed that POSTN-targeted miRNAs, downregulation of has-miR-144-3p and has-miR-30e-3p, were significantly linked to poor prognosis in patients with LUSC. Taken together, we identified that POSTN can act as a novel biomarker for determining the prognosis related to immune infiltration in patients with LUSC and deserves further research.
Project description:PurposeHepatocellular carcinoma (HCC) is one of the most commonly diagnosed digestive cancers and the fourth leading cause of death worldwide. Long noncoding RNAs (lncRNAs) with key roles in HCC development and progression have emerged and are used in the diagnosis and prognostic prediction of HCC. The lncRNA gradually increased during hepatocarcinogenesis (GIHCG) is a novel lncRNA with aberrant expression in many tumors, but its prognostic value and biological role in HCC have not been fully studied. Thus, the aim of this study was to explore the expression pattern and potential biological role of GIHCG in HCC.Patients and methodsThe expression pattern of GIHCG in HCC was analyzed in our HCC cohort and validated in The Cancer Genome Atlas (TCGA) database. To assess the prognostic value of GIHCG, survival analyses and Cox regression analyses were carried out in two HCC cohorts. Functional enrichment analysis was used to predict the gene sets and pathways related to aberrant GIHCG expression. Furthermore, the relationship between GIHCG expression and immune infiltration in HCC was analyzed.ResultsGIHCG was highly expressed in HCC tissues compared with normal liver tissues. In addition, high GIHCG expression was significantly correlated with inferior clinicopathological characteristics and shorter survival times. High GIHCG expression was an independent prognostic factor for overall survival and disease-free survival in the HCC cohort in our center and in the TCGA-LIHC cohort. Hallmark terms such as "G2M checkpoint", "MYC targets" and "DNA repair" were enriched in the GIHCG high-expression groups. High GIHCG expression negatively correlated with the infiltration of memory CD4+ and CD8+ T cells, natural killer cells, macrophages, dendritic cells, neutrophils and monocytes.ConclusionThe findings of our study indicate that GIHCG is a biomarker that can be used to predict the prognosis of HCC patients and is correlated with immune cell infiltration in HCC.
Project description:Aberrant expression of members of the proteasome subunit beta (PSMB) family (including PSMB2, PSMB4, PSMB7 and PSMB8) has been reported in hepatocellular carcinoma (HCC). However the role of PSMB5 in HCC is unclear. To address this issue, we examined the expression of PSMB5 in HCC tissues using the The Cancer Genome Atlas, International Cancer Genome Consortium and Gene Expression Omnibus databases. A quantitative real-time PCR and immunohistochemistry were performed to validate the expression of PSMB5 in HCC. The survival mutation status and immune cell infiltration of PSMB5 were also evaluated in HCC. We then examined the effect of knocking down PSMB5 expression through RNA interference in the HCC cell line Huh7. High expression of PSMB5 was observed in HCC tissues and was associated with poor prognosis. PSMB5 expression and clinical characteristics were then incorporated to build a prognostic nomogram. We observed that PSMB5 expression was closely related to the abundance of B cells, CD4+ T cells, CD8+ T cells, dendritic cell macrophages and neutrophils. Moreover silencing of PSMB5 in Huh7 significantly suppressed cell proliferation and migration at the same time as increasing apoptosis. Inhibition of the phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin pathway was observed after PSMB5 downregulation in Huh7 cells. Our findings suggest that PSMB5 may promote the proliferation of HCC cells by inactivating the phosphatidylinositol-3-kinase/Akt/mechanistic target of rapamycin signaling pathway and thus PSMB5 may have potential as a biomarker for diagnosis and prognosis of HCC.
Project description:Aurora kinase B (AURKB) overexpression promotes tumor initiation and development by participating in the cell cycle. In this study, we focused on the mechanism of AURKB in hepatocellular carcinoma (HCC) progression and on AURKB's value as a diagnostic and prognostic biomarker in HCC. We used data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) to analyze AURKB expression in HCC. We found that the expression levels of AURKB in HCC samples were higher than those in the corresponding control group. R packages were used to analyze RNA sequencing data to identify AURKB-related differentially expressed genes (DEGs), and these genes were found to be significantly enriched during the cell cycle. The biological function of AURKB was verified, and the results showed that cell proliferation was slowed down and cells were arrested in the G2/M phase when AURKB was knocked down. AURKB overexpression resulted in significant differences in clinical symptoms, such as the clinical T stage and pathological stage. Kaplan-Meier survival analysis, Cox regression analysis, and Receiver Operating Characteristic (ROC) curve analysis suggested that AURKB overexpression has good diagnostic and prognostic potential in HCC. Therefore, AURKB may be used as a potential target for the diagnosis and cure of HCC.
Project description:PurposeTo investigate the expression of LPCAT1 in liver hepatocellular carcinoma (LIHC) and its relationship with prognosis and immune infiltration and predict its upstream nonencoding RNAs (ncRNAs).MethodIn this study, expression analysis and survival analysis for LPCAT1 in pan cancers were first performed by using The Cancer Genome Atlas (TCGA) data, which suggested that LPCAT1 might be a potential LIHC oncogene. Then, ncRNAs contributing to the overexpression of LPCAT1 were explored in starBase by a combination of expression analysis, correlation analysis, and survival analysis. Immune cell infiltration of LPCAT1 in LIHC was finally investigated via Tumor Immune Estimation Resource (TIMER).ResultSNHG3 was observed to be the most promising upstream lncRNA for the hsa-miR-139-5p/LPCAT1 axis in LIHC. In addition, the LPCAT1 level was significantly positively associated with tumor immune cell infiltration, biomarkers of immune cells, and immune checkpoint expression in LIHC.ConclusionTo summarize, the upregulation of LPCAT1 mediated by ncRNAs is associated with poor prognosis, immune infiltration, and immune checkpoint expression in LIHC.
Project description:Hepatocellular carcinoma (HCC) is the most common type of primary liver malignancy, with increased mortality and morbidity. Accumulating evidence suggested that 40S ribosomal protein S24 (RPS24) is related to malignant outcomes and progression. However, the role of RPS24 remains unclear in HCC. The mRNA and protein expression pattern of RPS24 in HCC was explored and confirmed based on the bioinformatics analysis and histological examination. The correlation between RPS24 expression and clinicopathological features, diagnostic value, prognosis, methylation status, and survival were evaluated. Then, we divided the HCC cohort into two groups based on the expression of RPS24, and performed the functional enrichment and immune cells infiltration analysis of RPS24. Furthermore, in vivo and in vitro experiments were performed to investigate the effect of RPS24 on HCC cells. RPS24 was observed to be elevated in HCC samples. RPS24 overexpression or RPS24 promoter methylation contributed to an unfavorable prognosis for HCC patients. The genes in the high RPS24 expression group were mainly enriched in DNA replication, cell cycle E2F targets, and the G2M checkpoint pathway. Moreover, the expression level of RPS24 was significantly related to immune infiltration and immunotherapy response. Our experiments also demonstrated that RPS24 knockdown suppressed the growth of HCC cells and tumor proliferation of the xenograft model. Therefore, RPS24 can be a potential adverse biomarker of HCC prognosis acting through facilitating cell proliferation and the formation of an immunosuppressive microenvironment in HCC. Targeting RPS24 may offer a promising therapeutic option for HCC management.