Ontology highlight
ABSTRACT: Importance
Isoprenoids are one of the largest classes of natural products, exhibiting diversity in structure and function. They also include compounds that are essential for cellular life across the biological world. In bacteria, isoprenoids are derived from two precursors, isopentenyl diphosphate and dimethylallyl diphosphate, synthesized primarily by the methylerythritol phosphate pathway. The aerotolerant Z. mobilis has the potential for methylerythritol phosphate pathway engineering by diverting some of the glucose that is typically efficiently converted into ethanol to produce isoprenoid precursors to make bioproducts and biofuels. Our data revealed the surprising finding that Z. mobilis IspG and IspH need to be co-optimized to improve flux via the methyl erythritol phosphate pathway in part to evade the oxygen sensitivity of IspH.
SUBMITTER: Misra J
PROVIDER: S-EPMC11218510 | biostudies-literature | 2024 Jul
REPOSITORIES: biostudies-literature
Microbiology spectrum 20240524 7
Isoprenoids are a diverse family of compounds that are synthesized from two isomeric compounds, isopentenyl diphosphate and dimethylallyl diphosphate. In most bacteria, isoprenoids are produced from the essential methylerythritol phosphate (MEP) pathway. The terminal enzymes of the MEP pathway IspG and IspH are [4Fe-4S] cluster proteins, and in <i>Zymomonas mobilis,</i> the substrates of IspG and IspH accumulate in cells in response to O<sub>2</sub>, suggesting possible lability of their [4Fe-4S ...[more]