Project description:Ochratoxin A (OTA) is one of the most abundant mycotoxin contaminants in food stuffs and possesses carcinogenic, nephrotoxic, teratogenic and immunotoxic properties. Especially, severe nephrotoxicity is of great concern, as characterized by degeneration of epithelial cells of the proximal tubules and interstitial fibrosis. However, its mechanism of toxicity, hazard identification as well as genetic risk factors contributing to OTA toxicity in humans has been elusive due to the lack of adequate models that fully recapitulate kidney function in vitro. The present study attempts to evaluate dose-response relationships, identify the contribution of active transport proteins that govern renal disposition of OTA, and determine the role of metabolism in bioactivation and detoxification of OTA using a 3D human kidney proximal tubule microphysiological system (kidney MPS). We demonstrated that IC50 values of OTA in kidney MPS culture (0.375 – 1.21 µM) were in good agreement with clinical toxic concentrations of OTA in urine. Surprisingly, no enhancement of kidney injury biomarkers was evident in the effluents of kidney MPS after OTA exposure despite significant toxicity observed by LIVE/DEAD staining, rather these biomarkers were decreased in OTA concentration-dependent manner. Furthermore, the effect of 1-aminobenzotriazole (ABT) and 6-(NBD-4-ylthio-) hexanol (NBDHEX), pan-inhibitor of P450 and GST enzymes, respectively, on the OTA-induced toxicity in kidney MPS was examined, which resulted in significant enhancement of OTA-induced toxicity by NBDHEX (3 µM) treatment whereas ABT (1 mM) treatment decreased OTA-induced toxicity, suggesting the roles of GSTs and P450 enzymes in the detoxification and bioactivation of OTA, respectively. Additionally, OTA transport studies using kidney MPS in the presence and absence of inhibitor of organic anion transporter(s), probenecid (1 mM), revealed the role of organic anionic membrane transporter(s) in the kidney specific disposition of OTA. Our findings provide a better understanding of the mechanism of OTA-induced kidney injury which may support changes in risk assessment, regulatory agency policies on allowable exposure levels and determination of genetic factors in high-risk populations against OTA nephrotoxicity.
Project description:Ochratoxin A (OTA) is one of the most abundant mycotoxin contaminants in food stuffs and possesses carcinogenic, nephrotoxic, teratogenic, and immunotoxic properties. Specifically, a major concern is severe nephrotoxicity, which is characterized by degeneration of epithelial cells of the proximal tubules and interstitial fibrosis. However, the mechanism of OTA toxicity, as well as the genetic risk factors contributing to its toxicity in humans has been elusive due to the lack of adequate models that fully recapitulate human kidney function in vitro. The present study attempts to evaluate dose-response relationships, identify the contribution of active transport proteins that govern the renal disposition of OTA, and determine the role of metabolism in the bioactivation and detoxification of OTA using a 3D human kidney proximal tubule microphysiological system (kidney MPS). We demonstrated that LC50 values of OTA in kidney MPS culture (0.375-1.21 μM) were in agreement with clinically relevant toxic concentrations of OTA in urine. Surprisingly, no enhancement of kidney injury biomarkers was evident in the effluent of the kidney MPS after OTA exposure despite significant toxicity observed by LIVE/DEAD staining. Instead, these biomarkers decreased in an OTA concentration-dependent manner. Furthermore, the effect of 1-aminobenzotriazole (ABT) and 6-(7-Nitro-2,1,3-benzoxadiazol-4-ylthio) hexanol (NBDHEX), pan-inhibitors of P450 and glutathione S-transferase (GST) enzymes, respectively, on OTA-induced toxicity in kidney MPS was examined. These studies revealed significant enhancement of OTA-induced toxicity by NBDHEX (3 μM) treatment, whereas ABT (1 mM) treatment decreased OTA-induced toxicity, suggesting roles for GSTs and P450 enzymes in the detoxification and bioactivation of OTA, respectively. Analysis of transcriptional changes using RNA-sequencing of kidney MPS treated with different concentrations of OTA revealed downregulation of several nuclear factor (erythroid derived-2)-like 2 (NRF2)-regulated genes by OTA treatment, including GSTs. The transcriptional repression of GSTs is likely playing a key role in OTA toxicity via attenuation of glutathione conjugation/detoxification. The sequential molecular events may explain the mechanism of toxicity associated with OTA. Additionally, OTA transport studies using kidney MPS in the presence and absence of probenecid (1 mM) suggested a role for organic anionic membrane transporter(s) in the kidney specific disposition of OTA. Our findings provide a clearer understanding of the mechanism of OTA-induced kidney injury, which may support changes in risk assessment, regulatory agency policies on allowable exposure levels, and determination of the role of genetic factors in populations at risk for OTA nephrotoxicity.
Project description:Functional assessment of endothelium serves as an important indicator of vascular health and is compromised in vascular disorders including hypertension, atherosclerosis, and preeclampsia. Endothelial dysfunction in these cases is linked to dysregulation of the immune system involving both changes to immune cells and increased secretion of inflammatory cytokines. Herein, we utilize a well-established microfluidic device to generate a 3-dimensional vascular microphysiological system (MPS) consisting of a tubular blood vessel lined with human umbilical vein endothelial cells (HUVECs) to evaluate endothelial function measured via endothelial permeability and Ca2+ signaling. We evaluated the effect of a mixture of factors associated with inflammation and cardiovascular disease (TNFα, VEGF-A, IL-6 at 10 ng ml-1 each) on vascular MPS and inferred that inflammatory mediators contribute to endothelial dysfunction by disrupting the endothelial barrier over a 48 hour treatment and by diminishing coordinated Ca2+ activity over a 1 hour treatment. We also evaluated the effect of peripheral blood mononuclear cells (PBMCs) on endothelial permeability and Ca2+ signaling in the HUVEC MPS. HUVECs were co-cultured with PBMCs either directly wherein PBMCs passed through the lumen or indirectly with PBMCs embedded in the supporting collagen hydrogel. We revealed that phytohemagglutinin (PHA)-M activated PBMCs cause endothelial dysfunction in MPS both through increased permeability and decreased coordinated Ca2+ activity compared to non-activated PBMCs. Our MPS has potential applications in modeling cardiovascular disorders and screening for potential treatments using measures of endothelial function.
Project description:Inflammation plays an important role in the development of sepsis-acute respiratory distress syndrome (ARDS). Olink inflammation-related biomarker panels were used to analyze the levels of 92 inflammation-related proteins in plasma with sepsis-ARDS (n = 25) and healthy subjects (n = 25). There were significant differences in 64 inflammatory factors, including TNFRSF11B in sepsis-ARDS, which was significantly higher than that in controls. Functional analysis showed that TNFRSF11B was closely focused on signal transduction, immune response, and inflammatory response. The TNFRSF11B level in sepsis-ARDS plasma, LPS-induced mice, and LPS-stimulated HUVECs significantly increased. The highest plasma concentration of TNFRSF11B in patients with sepsis-ARDS was 10-20 ng/mL, and 10 ng/mL was selected to stimulate HUVECs. Western blot results demonstrated that the levels of syndecan-1, claudin-5, VE-cadherin, occludin, aquaporin-1, and caveolin-1 in TNFRSF11B-stimulated HUVECs decreased, whereas that of connexin-43 increased in TNFRSF11B-stimulated HUVECs. To the best of the authors' knowledge, this study was the first to reveal elevated TNFRSF11B in sepsis-ARDS associated with vascular endothelial dysfunction. In summary, TNFRSF11B may be a new potential predictive and diagnostic biomarker for vascular endothelium damage in sepsis-ARDS.
Project description:The activation of pulmonary endothelial cells (ECs) triggers the occurrence of lung injury and is a hallmark of sepsis-associated acute respiratory distress syndrome(ARDS). Aberrant metabolism favoring glycolysis plays a pivotal role in the pathogenesis of sepsis-induced EC activation. Herein we demonstrate that glycolysis-related histone lactylation, represented by H3K14 lactylation (H3K14la), drives sepsis-associated EC activation and lung injury. Accordingly, H3K14la level is elevated in injured lung tissue and activated ECs. Inhibition of lactate production suppresses both H3K14la levels and EC activation in response to lipopolysaccharide (LPS). We also show that lactate-dependent H3K14la is enriched at the promoters of ferroptosis-related genes, thereby inducing ferroptosis in ECs, and inhibiting ferroptosis effectively ameliorates EC activation. Taken together, elevated lactate in sepsis modulates EC activation and lung injury via histone lactylation and manipulation of glycolysis/H3K14la/ferroptosis axis may provide novel therapeutic approaches for the treatment of sepsis-associated ARDS.
Project description:Background: Pulmonary endothelial cell (EC) activation is a key factor in acute respiratory distress syndrome (ARDS). In sepsis, increased glycolysis leads to lactate buildup, which induces lysine lactylation (Kla) on histones and other proteins. However, the role of protein lactylation in EC dysfunction during sepsis-induced ARDS remains unclear. Methods: Integrative lactylome and proteome analysis was performed to identify the global lactylome profiling in lung tissues of septic mice. Cut&Tag analysis were used to identify the transcriptional targets of histone H3 lysine 14 lactylation (H3K14la) in ECs. Results: Septic mice exhibited elevated levels of lactate and H3K14la in lung tissues, particularly in pulmonary ECs. Suppressing glycolysis reduced both H3K14la and EC activation, suggesting a link between glycolysis and lactylation. Moreover, H3K14la was found to be enriched at promoter regions of ferroptosis-related genes such as transferrin receptor (TFRC) and solute carrier family 40 member 1 (SLC40A1), which contributed to EC activation and lung injury under septic conditions. Conclusions: We for the first time reported the role of lactate-dependent H3K14 lactylation in regulating EC ferroptosis to promote vascular dysfunction during sepsis-induced lung injury. Our findings suggest that manipulation of glycolysis/H3K14la/ferroptosis axis may provide novel therapeutic approaches for sepsis-associated ARDS.
Project description:BackgroundInflammation affecting whole organism vascular networks plays a central role in the progression and establishment of several human diseases, including Gram-negative sepsis. Although the molecular mechanisms that control inflammation of specific vascular beds have been partially defined, knowledge lacks on the impact of these on the molecular dynamics of whole organism vascular beds. In this study, we have generated an in vivo model by coupling administration of lipopolysaccharide with stable isotope labeling in mammals to mimic vascular beds inflammation in Gram-negative sepsis and to evaluate its effects on the proteome molecular dynamics. Proteome molecular dynamics of individual vascular layers (glycocalyx (GC), endothelial cells (EC), and smooth muscle cells (SMC)) were then evaluated by coupling differential systemic decellularization in vivo with unbiased systems biology proteomics.ResultsOur data confirmed the presence of sepsis-induced disruption of the glycocalyx, and we show for the first time the downregulation of essential molecular maintenance processes in endothelial cells affecting this apical vascular coating. Similarly, a novel catabolic phenotype was identified in the newly synthesized EC proteomes that involved the impairment of protein synthesis, which affected multiple cellular mechanisms, including oxidative stress, the immune system, and exacerbated EC-specific protein turnover. In addition, several endogenous molecular protective mechanisms involving the synthesis of novel antithrombotic and anti-inflammatory proteins were also identified as active in EC. The molecular dynamics of smooth muscle cells in whole organism vascular beds revealed similar patterns of impairment as those identified in EC, although this was observed to a lesser extent. Furthermore, the dynamics of protein posttranslational modifications showed disease-specific phosphorylation sites in the EC proteomes.ConclusionsTogether, the novel findings reported here provide a broader picture of the molecular dynamics that take place in whole organism vascular beds in Gram-negative sepsis inflammation. Similarly, the obtained data can pave the way for future therapeutic strategies aimed at intervening in specific protein synthesis mechanisms of the vascular unit during acute inflammatory processes.
Project description:Statins are used to lower cholesterol and prevent cardiovascular disease. Musculoskeletal side effects known as statin associated musculoskeletal symptoms (SAMS), are reported in up to 10% of statin users, necessitating statin therapy interruption and increasing cardiovascular disease risk. We tested the hypothesis that, when exposed to statins ex vivo, engineered human skeletal myobundles derived from individuals with (n = 10) or without (n = 14) SAMS and elevated creatine-kinase levels exhibit statin-dependent muscle defects. Myoblasts were derived from muscle biopsies of individuals (median age range of 62-64) with hyperlipidemia with (n = 10) or without (n = 14) SAMS. Myobundles formed from myoblasts were cultured with growth media for 4 days, low amino acid differentiation media for 4 days, then dosed with 0 and 5μM of statins for 5 days. Tetanus forces were subsequently measured. To model the change of tetanus forces among clinical covariates, a mixed effect model with fixed effects being donor type, statin concentration, statin type and their two way interactions (donor type*statin concentration and donor type* statin type) and the random effect being subject ID was applied. The results indicate that statin exposure significantly contributed to decrease in force (P<0.001) and the variability in data (R2C [R square conditional] = 0.62). We found no significant differences in force between myobundles from patients with/without SAMS, many of whom had chronic diseases. Immunofluorescence quantification revealed a positive correlation between the number of straited muscle fibers and tetanus force (R2 = 0.81,P = 0.015) and negative correlation between number of fragmented muscle fibers and tetanus force (R2 = 0.482,P = 0.051) with no differences between donors with or without SAMS. There is also a correlation between statin exposure and presence of striated fibers (R2 = 0.833, P = 0.047). In patient-derived myobundles, statin exposure results in myotoxicity disrupting SAA organization and reducing force. We were unable to identify differences in ex vivo statin myotoxicity in this system. The results suggest that it is unlikely that there is inherent susceptibility to or persistent effects of statin myopathy using patient-derived myobundles.
Project description:Sepsis is a life-threatening clinical syndrome characterized by multiorgan dysfunction caused by a dysregulated or over-reactive host response to infection. During sepsis, the coagulation cascade is triggered by activated cells of the innate immune system, such as neutrophils and monocytes, resulting in clot formation mainly in the microcirculation, a process known as immunothrombosis. Although this process aims to protect the host through inhibition of the pathogen's dissemination and survival, endothelial dysfunction and microthrombotic complications can rapidly lead to multiple organ dysfunction. The development of treatments targeting endothelial innate immune responses and immunothrombosis could be of great significance for reducing morbidity and mortality in patients with sepsis. Medications modifying cell-specific immune responses or inhibiting platelet-endothelial interaction or platelet activation have been proposed. Herein, we discuss the underlying mechanisms of organ-specific endothelial dysfunction and immunothrombosis in sepsis and its complications, while highlighting the recent advances in the development of new therapeutic approaches aiming at improving the short- or long-term prognosis in sepsis.