Project description:Anaplastic thyroid cancer represents 1%-2% of thyroid cancers. For its aggressiveness, it is considered a systemic disease at the time of diagnosis. Surgery remains the cornerstone of therapy in resectable tumor. Traditional chemotherapy has little effect on metastatic disease. A multimodality approach, incorporating cytoreductive surgical resection, chemoradiation, either concurrently or sequentially, and new promising target therapies is advisable. Doxorubicin is the most commonly used agent, with a response rate of 22%. Recently, other chemotherapy agents have been used, such as paclitaxel and gemcitabine, with superimposable activity and response rates of 10%-20%. However, survival of patients with anaplastic thyroid cancer has changed little in the past 50 years, despite more aggressive systemic and radiotherapies. Several new agents are currently under investigation. Some of them, such as sorafenib, imatinib, and axitinib have been tested in small clinical trials, showing promising disease control rates ranging from 35%-75%. Referral of patients for participation in clinical trials is needed.
Project description:Anaplastic thyroid cancer (ATC) is one of the deadliest human cancers and it is less than 2% of thyroid carcinomas (TCs). The standard treatment of ATC includes surgical debulking, accelerated hyperfractionated external beam radiation therapy (EBRT), and chemotherapy, in particular with cisplatin or doxorubicin, achieving about 10 months of median survival. Since ATC is a rare and aggressive tumor, it is still challenging to predict the patient clinical therapy responsiveness. Several genetic mutations have been described in ATC, involved in different molecular pathways linked to tumor progression, and novel therapies acting on these molecular pathways have been investigated, to improve the quality of life in these patients. Here we review the new targeted therapy of ATC. We report interesting results obtained with molecules targeting different pathways: angiogenesis (vandetanib, combretastatin, sorafenib, lenvatinib, sunitinib, CLM94, CLM3, etc.); EGFR (gefitinib, docetaxel); BRAF (dabrafenib/trametinib, vemurafenib); PPARγ agonists (rosiglitazone, pioglitazone, efatutazone); PD-1 and PD-L1 (pembrolizumab); TERT. To escape resistance to monotherapies, the evaluation of combination strategies with radiotherapy, chemotherapy, or targeted drugs is ongoing. The results of clinical trials with dabrafenib and trametinib led to the approval from FDA of this combination for patients with BRAF V600E mutated ATC with locally advanced, unresectable, or metastatic ATC. The anti-PD-L1 antibody immunotherapy, alone or combined with a BRAF inhibitor, has been shown also promising in the treatment of ATC. Furthermore, to increase the therapeutic success and not to use ineffective or even harmful treatments, a real tailored therapy should be pursued, and this can be achieved thanks to the new available genomic analysis methods and to the possibility to test in vitro novel treatments directly in primary cells from each ATC patient. Exploring new treatment strategies is mandatory to improve the survival of these patients, guaranteeing a good quality of life.
Project description:Anaplastic thyroid cancer (ATC) is a clinically aggressive form of undifferentiated thyroid cancer with limited treatment options. Immunotherapy for patients with ATC remains challenging. Tumor-associated macrophages (TAMs) constitute over 50% of ATC-infiltrating cells, and their presence is associated with a poor prognosis. Consequently, the development of new therapies targeting immune checkpoints in TAMs is considered a promising therapeutic approach for ATC. We have previously shown that soluble factors secreted by ATC cells induced pro-tumor M2-like polarization of human monocytes by upregulating the levels of the inhibitory receptor TIM3. Here, we extended our observations on ATC-cell-induced xenograft tumors. We observed a large number of immune cells infiltrating the ATC xenograft tumors. Significantly, 24-28% of CD45+ immune cells were macrophages (CD11b+ F4/80+). We further showed that 40% of macrophages were polarized toward a M2-like phenotype, as assessed by CD206 expression and by a significant increase in the Arg1/iNOS (M2/M1) ratio. Additionally, we found that ATC xenograft tumors had levels of TIM3 expression when determined by RT-PCR and immunofluorescence assays. Interestingly, we detected the expression of TIM3 in macrophages in ATC tumors by flow cytometry assays. Furthermore, TIM3 expression correlated with macrophage marker expression in human ATC. Our studies show that TIM3 is a newly identified immune checkpoint in macrophages. Since TIM3 is known as a negative immune regulator, it should be considered as a promising immunotherapeutic target for ATC.
Project description:Anaplastic thyroid cancer is a rare and aggressive thyroid cancer with an overall survival measured in months. Because of this poor prognosis and often advanced age at presentation, these patients have traditionally been treated palliatively and referred for hospice. However, recent progress using novel therapies has energized the field, and several promising clinical trials are now available for these patients. This review will highlight this progress and the potential treatments that could pave the way to improved outcomes and quality of life for patients with this disease.
Project description:BackgroundThe treatment of differentiated thyroid cancer refractory to radioactive iodine (RAI) had been hampered by few effective therapies. Recently, tyrosine kinase inhibitors (TKIs) have shown activity in this disease. Clinical guidance on the use of these agents in RAI-refractory thyroid cancer is warranted.Materials and methodsMolecular mutations found in RAI-refractory thyroid cancer are summarized. Recent phase II and III clinical trial data for TKIs axitinib, lenvatinib, motesanib, pazopanib, sorafenib, sunitinib, and vandetinib are reviewed including efficacy and side effect profiles. Molecular targets and potencies of these agents are compared. Inhibitors of BRAF, mammalian target of rapamycin, and MEK are considered.ResultsRoutine testing for molecular alterations prior to therapy is not yet recommended. TKIs produce progression-free survival of approximately 1 year (range: 7.7-19.6 months) and partial response rates of up to 50% by Response Evaluation Criteria in Solid Tumors. Pazopanib and lenvatinib are the most active agents. The majority of patients experienced tumor shrinkage with TKIs. Common adverse toxicities affect dermatologic, gastrointestinal, and cardiovascular systems.ConclusionMultiple TKIs have activity in RAI-refractory differentiated thyroid cancer. Selection of a targeted agent should depend on disease trajectory, side effect profile, and goals of therapy.
Project description:Anaplastic thyroid cancer (ATC) is one of the worst human malignancies, with an associated median survival of only 5 months. It is resistant to conventional thyroid cancer therapies, including radioiodine and thyroid-stimulating hormone suppression. Cancer immunotherapy has emerged over the past few decades as a transformative approach to treating a wide variety of cancers. However, immunotherapy for ATC is still in the experimental stage. This review will cover several strategies of immunotherapy and discuss the possible application of these strategies in the treatment of ATC (such as targeted therapy for tumor-associated macrophages, cancer vaccines, adoptive immunotherapy, monoclonal antibodies and immune checkpoint blockade) with the hope of improving the prognosis of ATC in the future.
Project description:BackgroundLenvatinib has been approved by regulatory agencies in Japan, the United States, and the European Union for treatment of radioiodine-refractory differentiated thyroid cancer (RR-DTC). Thyroid cancer, however, is a clinically diverse disease that includes anaplastic thyroid cancer (ATC), the subtype associated with the highest lethality. Effective therapy for ATC is an unmet need.Patients and methodsThis phase 2, single-arm, open-label study in patients with thyroid cancer, including ATC, RR-DTC, and medullary thyroid cancer was conducted from 3 September 2012 to 9 July 2015. Patients received lenvatinib 24 mg daily until disease progression or development of unacceptable toxicity. The primary endpoint was safety, and the secondary endpoint was efficacy, as assessed by progression-free survival (PFS), overall survival (OS), and objective response rate.ResultsAt data cutoff, 17 patients with ATC were enrolled. All experienced ≥1 treatment-emergent adverse event (TEAE). The most frequent TEAEs were decreased appetite (82%), hypertension (82%), fatigue (59%), nausea (59%), and proteinuria (59%). Of note, only one patient required lenvatinib withdrawal because of a TEAE, and this TEAE was considered unrelated to lenvatinib. The median PFS was 7.4 months [95% confidence interval (CI): 1.7-12.9], the median OS was 10.6 months (95% CI: 3.8-19.8), and the objective response rate was 24%.ConclusionIn this study, lenvatinib demonstrated manageable toxicities with dose adjustments and clinical activity in patients with ATC. This clinical activity of lenvatinib warrants further investigation in ATC.ClinicaltrialsgovNCT01728623.
Project description:ObjectiveAnaplastic thyroid cancer (ATC) is one of the most lethal human cancers with meager treatment options. We aimed to identify the targeted drugs already approved by the Food and Drug Administration (FDA) for solid cancer in general, which could be effective in ATC.DesignDatabase mining.MethodsFDA-approved drugs for targeted therapy were identified by screening the databases of MyCancerGenome and the National Cancer Institute. Drugs were linked to the target genes by querying Drugbank. Subsequently, MyCancerGenome, CIViC, TARGET and OncoKB were mined for genetic alterations which are predicted to lead to drug sensitivity or resistance. We searched the Cancer Genome Atlas database (TCGA) for patients with ATC and probed their sequencing data for genetic alterations which predict a drug response.ResultsIn the study,155 FDA-approved drugs with 136 potentially targetable genes were identified. Seventeen (52%) of 33 patients found in TCGA had at least one genetic alteration in targetable genes. The point mutation BRAF V600E was seen in 45% of patients. PIK3CA occurred in 18% of cases. Amplifications of ALK and SRC were detected in 3% of cases, respectively. Fifteen percent of the patients displayed a co-mutation of BRAF and PIK3CA. Besides BRAF-inhibitors, the PIK3CA-inhibitor copanlisib showed a genetically predicted response. The 146 (94%) remaining drugs showed no or low (under 4% cases) genetically predicted drug response.ConclusionsWhile ATC carrying BRAF mutations can benefit from BRAF inhibitors and this effect might be enhanced by a combined strategy including PIK3CA inhibitors in some of the patients, alterations in BRAFWT ATC are not directly targeted by currently FDA-approved options.
Project description:Anaplastic thyroid cancer (ATC) represents one of the most lethal human cancers and although this tumor type is rare, ATC accounts for the majority of deaths from thyroid cancer. Due to the rarity of ATC, a comprehensive genomic characterization of this tumor type has been challenging, and thus the development of new therapies has been lacking. To date, there is only one mutation-driven targeted therapy for BRAF-mutant ATC. Recent genomic studies have used next generation sequencing to define the genetic landscape of ATC in order to identify new therapeutic targets. Together, these studies have confirmed the role of oncogenic mutations of MAPK pathway as key drivers of differentiated thyroid cancer (BRAF, RAS), and that additional genetic alterations in the PI3K pathway, TP53, and the TERT promoter are necessary for anaplastic transformation. Recent novel findings have linked the high mutational burden associated with ATC with mutations in the Mismatch Repair (MMR) pathway and overactivity of the AID/APOBEC family of cytidine deaminases. Additional novel mutations include cell cycle genes, SWI/SNF chromatin remodeling complex, and histone modification genes. Mutations in RAC1 were also identified in ATC, which have important implications for BRAF-directed therapies. In this review, we summarize these novel findings and the new genetic landscape of ATC. We further discuss the development of therapies targeting these pathways that are being tested in clinical and preclinical studies.
Project description:BackgroundAnaplastic thyroid cancer (ATC) is rare, accounting for 1-2% of thyroid malignancies. Median survival is only 3-10 months, and the optimal therapeutic approach has not been established. This study aimed to evaluate outcomes in ATC based on treatment modality.MethodsRetrospective review was performed for patients treated at a single institution between 1990 and 2015. Demographic and clinical covariates were extracted from the medical record. Overall survival (OS) was modeled using Kaplan Meier curves for different treatment modalities. Univariate and multivariate analyses were conducted to assess the relationships between treatment and disease characteristics and OS.Results28 patients with ATC were identified (n = 16 female, n = 12 male; n = 22 Caucasian, n = 6 African-American; median age 70.9). Majority presented as Stage IVB (71.4%). Most patients received multimodality therapy. 19 patients underwent local surgical resection. 21 patients received locoregional external beam radiotherapy (EBRT) with a median cumulative dose of 3,000 cGy and median number of fractions of 16. 14 patients received systemic therapy (n = 11 concurrent with EBRT), most commonly doxorubicin (n = 9). 16 patients were never disease free, 11 patients had disease recurrence, and 1 patient had no evidence of disease progression. Median OS was 4 months with 1-year survival of 17.9%. Regression analysis showed that EBRT (HR: 0.174; 95% CI: 0.050-0.613; p=0.007) and surgical resection (HR: 0.198; 95% CI: 0.065-0.598; p=0.004) were associated with improved OS. Administration of chemotherapy was not associated with OS.ConclusionsAnaplastic thyroid cancer patients receiving EBRT to the thyroid area/neck and/or surgical resection had better OS than patients without these therapies, though selection bias likely contributed to improved outcomes since patients who can undergo these therapies tend to have better performance status. Prognosis remains poor overall, and new therapeutic approaches are needed to improve outcomes.