Project description:Ondine's curse is one of the most enchanting mythical tales in the field of Medicine. The nymph Ondine was an immortal water spirit who became human after falling in love for a man, marrying him, and having a baby. In one of the versions of the tale, when she caught her husband sleeping with another woman, she cursed him to remain awake in order to control his own breathing. During the 19th century, the rare syndrome characterized by loss of autonomic breath control, while voluntary respiration remains intact, was cleverly named "Ondine's curse". Nowadays, the term Ondine's curse is usually associated with congenital central hypoventilation syndrome; however, in medical literature, it also designates several respiratory disorders. Here, we present a review of the myth focused on history, arts and medicine.
Project description:BackgroundThere has been debate on whether a global or unified field of bioethics exists. If bioethics is a unified global field, or at the very least a closely shared way of thinking, then we should expect bioethicists to behave the same way in their academic activities anywhere in the world. This paper investigates whether there is a 'global bioethics' in the sense of a unified academic community.MethodsTo address this question, we study the web-linking patterns of bioethics institutions, the citation patterns of bioethics papers and the buying patterns of bioethics books.ResultsAll three analyses indicate that there are geographical and institutional differences in the academic behavior of bioethicists and bioethics institutions.ConclusionThese exploratory studies support the position that there is no unified global field of bioethics. This is a problem if the only reason is parochialism. But these regional differences are probably of less concern if one notices that bioethics comes in many not always mutually understandable dialects.
Project description:Background: Educators often face difficulties in explaining abstract concepts such as vectors. During the ongoing coronavirus disease 2019 (COVID-19) pandemic, fully online classes have also caused additional challenges to using conventional teaching methods. To explain a vector concept of more than 2 dimensions, visualization becomes a problem. Although Microsoft PowerPoint can integrate animation, the illustration is still in 2-dimensions. Augmented reality (AR) technology is recommended to aid educators and students in teaching-learning vectors, namely via a vector personal computer augmented reality system (VPCAR), to fulfil the demand for tools to support the learning and teaching of vectors. Methods: A PC learning module for vectors was developed in a 3-dimensional coordinate system by using AR technology. Purposive sampling was applied to get feedback from educators and students in Malaysia through an online survey. The supportiveness of using VPCAR based on six items (attractiveness, easiness, visualization, conceptual understanding, inspiration and helpfulness) was recorded on 5-points Likert-type scales. Findings are presented descriptively and graphically. Results: Surprisingly, both students and educators adapted to the new technology easily and provided significant positive feedback that showed a left-skewed and J-shaped distribution for each measurement item, respectively. The distributions were proven significantly different among the students and educators, where supportive level result of educators was higher than students. This study introduced a PC learning module other than mobile apps as students mostly use laptops to attend online class and educators also engage other IT tools in their teaching. Conclusions: Based on these findings, VPCAR provides a good prospect in supporting educators and students during their online teaching-learning process. However, the findings may not be generalizable to all students and educators in Malaysia as purposive sampling was applied. Further studies may focus on government-funded schools using the newly developed VPCAR system, which is the novelty of this study.
Project description:The genetic basis of myocarditis remains an intriguing concept, at least as long as the definition of myocarditis constitutes the definitive presence of myocardial inflammation sufficient to cause the observed ventricular dysfunction in the setting of cardiotropic infections. Autoimmune or immune-mediated myocardial inflammation constitutes a complex area of clinical interest, wherein numerous and not yet fully understood role of hereditary auto-inflammatory diseases can result in inflammation of the pericardium and myocardium. Finally, myocardial involvement in hereditary immunodeficiency diseases, cellular and humoral, is a possible trigger for infections which may complicate the diseases themselves. Whether the role of constitutional genetics can make the patient susceptible to myocardial inflammation remains yet to be explored.
Project description:The different pathways between the position of a near-infrared camera and the user's eye limit the use of existing near-infrared fluorescence imaging systems for tumor margin assessments. By utilizing an optical system that precisely matches the near-infrared fluorescence image and the optical path of visible light, we developed an augmented reality (AR)-based fluorescence imaging system that provides users with a fluorescence image that matches the real-field, without requiring any additional algorithms. Commercial smart glasses, dichroic beam splitters, mirrors, and custom near-infrared cameras were employed to develop the proposed system, and each mount was designed and utilized. After its performance was assessed in the laboratory, preclinical experiments involving tumor detection and lung lobectomy in mice and rabbits by using indocyanine green (ICG) were conducted. The results showed that the proposed system provided a stable image of fluorescence that matched the actual site. In addition, preclinical experiments confirmed that the proposed system could be used to detect tumors using ICG and evaluate lung lobectomies. The AR-based intraoperative smart goggle system could detect fluorescence images for tumor margin assessments in animal models, without disrupting the surgical workflow in an operating room. Additionally, it was confirmed that, even when the system itself was distorted when worn, the fluorescence image consistently matched the actual site.
Project description:Lymphaticovenular anastomosis (LVA) is a widely performed surgical procedure for the treatment of lymphedema. For good LVA outcomes, identifying lymphatic vessels and venules is crucial. Photoacoustic lymphangiography (PAL) is a new technology for visualizing lymphatic vessels. It can depict lymphatic vessels at high resolution; therefore, this study focused on how to apply PAL for lymphatic surgery. To visualize lymphatic vessels, indocyanine green was injected as a color agent. PAI-05 was used as the photoacoustic imaging device. Lymphatic vessels and veins were visualized at 797- and 835-nm wavelengths. First, it was confirmed whether the branching of the vasculature as depicted by the PAL was consistent with the actual branching of the vasculature as confirmed intraoperatively. Second, to use PAL images for surgical planning, preoperative photoacoustic images were superimposed onto the patient limb through augmented reality (AR) glasses (MOVERIO Smart Glass BT-30E). Lymphatics and venule markings drawn using AR glasses were consistent with the actual intraoperative images obtained during LVA. To anastomose multiple lymphatic vessels, a site with abundant venous branching was selected as the incision site; and selecting the incision site became easier. The anatomical morphology obtained by PAL matched the surgical field. AR-based marking could be very useful in future LVA.
Project description:Telemedicine has the potential to overcome the unequal distribution of medical resources worldwide. In this study, we report the second-generation co-axial projective imaging (CPI-2) system featured with orthotopic image projection for augmented reality surgical telementoring. The CPI-2 system can acquire surgical scene images from the local site, transmit them wirelessly to the remote site, and project the virtual annotations drawn by a remote expert with great accuracy to the surgical field. The performance characteristics of the CPI-2 system are quantitatively verified in benchtop experiments. The ex vivo study that compares the CPI-2 system and a monitor-based telementoring system shows that the CPI-2 system can reduce the focus shift and avoid subjective mapping of the instructions from a monitor to the real-world scene, thereby saving operation time and achieving precise teleguidance. The clinical feasibility of the CPI-2 system is validated in teleguided skin cancer surgery. Our ex vivo and in vivo experiment results imply the improved performance of surgical telementoring, and the clinical utility of deploying the CPI-2 system for surgical interventions in resource-limited settings. The CPI-2 system has the potential to reduce healthcare disparities in remote areas with limited resources.
Project description:Purpose of reviewIn this paper, we review the current state and modalities of adoptive cell therapies (ACT) in non-small cell lung carcinoma (NSCLC). We also discuss the challenges hampering the use of ACT and the approaches to overcome these barriers.Recent findingsSeveral trials are ongoing investigating the three main modalities of T cell-based ACT: tumor-infiltrating lymphocytes (TILs), genetically engineered T-cell receptors (TCRs), and chimeric antigen receptor (CAR) T cells. The latter, in particular, has revolutionized the treatment of hematologic malignancies. However, the efficacy against solid tumor is still sparse. Major limitations include the following: severe toxicities, restricted infiltration and activation within the tumors, antigen escape and heterogeneity, and manufacturing issues. ACT is a promising tool to improve the outcome of metastatic NSCLC, but significant translational and clinical research is needed to improve its application and expand the use in NSCLC.
Project description:Background: Corticosteroids have been administered prophylactically for more than 60 years in pediatric heart surgery, however, their use remains a matter of debate. There are three main indications for corticosteroid use in pediatric heart surgery with the use of cardiopulmonary bypass (CPB): (1) to blunt the systemic inflammatory response (SIRS) induced by the extracorporeal circuit; (2) to provide perioperative supplementation for presumed relative adrenal insufficiency; (3) for the presumed neuroprotective effect during deep hypothermic circulatory arrest operations. This review discusses the current evidence behind the use of corticosteroids in these three overlapping areas. Materials and Methods: We conducted a structured research of the literature using PubMed and MEDLINE databases to November 2017 and additional articles were identified by cross-referencing. Results: The evidence suggests that there is no correlation between the effect of corticosteroids on inflammation and their effect on clinical outcome. Due to the limitations of the available evidence, it remains unclear if corticosteroids have an impact on early post-operative outcomes or if there are any long-term effects. There is a limited understanding of the hypothalamic-pituitary-adrenal axis function during cardiac surgery in children. The neuroprotective effect of corticosteroids during deep hypothermic circulatory arrest surgery is controversial. Conclusions: The utility of steroid administration for pediatric heart surgery with the use of CPB remains a matter of debate. The effect on early and late outcomes requires clarification with a large multicenter randomized trial. More research into the understanding of the adrenal response to surgery in children and the effect of corticosteroids on brain injury is warranted.