Unknown

Dataset Information

0

Human gut microbiota interactions shape the long-term growth dynamics and evolutionary adaptations of Clostridioides difficile.


ABSTRACT: Clostridioides difficile can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating C. difficile dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing C. difficile and the prevalent human gut symbiont Phocaeicola vulgatus from competitive exclusion to coexistence, facilitated by increased cross-feeding. In this environment, C. difficile adapted via single-point mutations in key metabolic genes, altering its metabolic niche from proline to glucose utilization. These metabolic changes substantially impacted inter-species interactions and reduced disease severity in the mammalian gut. In sum, human gut microbiota interactions are crucial in shaping the long-term growth dynamics and evolutionary adaptations of C. difficile, offering key insights for developing anti-C. difficile strategies.

SUBMITTER: Sulaiman JE 

PROVIDER: S-EPMC11275832 | biostudies-literature | 2024 Jul

REPOSITORIES: biostudies-literature

altmetric image

Publications

Human gut microbiota interactions shape the long-term growth dynamics and evolutionary adaptations of <i>Clostridioides difficile</i>.

Sulaiman Jordy Evan JE   Thompson Jaron J   Cheung Pak Lun Kevin PLK   Qian Yili Y   Mill Jericha J   James Isabella I   Vivas Eugenio I EI   Simcox Judith J   Venturelli Ophelia O  

bioRxiv : the preprint server for biology 20240717


<i>Clostridioides difficile</i> can transiently or persistently colonize the human gut, posing a risk factor for infections. This colonization is influenced by complex molecular and ecological interactions with human gut microbiota. By investigating <i>C. difficile</i> dynamics in human gut communities over hundreds of generations, we show patterns of stable coexistence, instability, or competitive exclusion. Lowering carbohydrate concentration shifted a community containing <i>C. difficile</i>  ...[more]

Similar Datasets

| S-EPMC11852276 | biostudies-literature
| S-EPMC10174544 | biostudies-literature
| S-EPMC11358386 | biostudies-literature
| S-EPMC9868170 | biostudies-literature
| S-EPMC6716646 | biostudies-literature
| S-EPMC7857531 | biostudies-literature
| S-EPMC8673638 | biostudies-literature
| S-EPMC8543057 | biostudies-literature
| S-EPMC7435156 | biostudies-literature
| S-EPMC9176289 | biostudies-literature