Unknown

Dataset Information

0

Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids.


ABSTRACT: Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable DNP alternative. To pursue this ambitious goal, we recently introduced the concept of recyclable hyperpolarized flow (HypFlow) DNP where hyperpolarization happens in porous hyperpolarizing solids placed in a compact benchtop DNP polarizer at a magnetic field of 1 T and a temperature of 77 K. Here we aim to optimize the radical concentrations immobilized in hyperpolarizing solids with the objective of generating as much polarization as possible in a timeframe (<1 s) compatible with future recyclable DNP applications. To do so, the solid-state DNP enhancement factors, build-up rates and DNP spectra of different hyperpolarizing solids containing various nitroxide radical loadings (20-74 μmol cm-3) are compared against the DNP performance of varying nitroxide concentrations (10-100 mM) solvated in a glassy frozen solution. We demonstrate that in <1 s, polarization enhancement goes up to 56 and 102 with surface-bound and solvated radicals, respectively, under the optimized conditions. For the range of nitroxide concentrations used cross effect DNP seems to be the dominant mechanism under benchtop conditions. This was deduced from the electron paramagnetic resonance (EPR) lineshape of TEMPOL investigated using Q-band EPR measurements.

SUBMITTER: Vaneeckhaute E 

PROVIDER: S-EPMC11307143 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Full optimization of dynamic nuclear polarization on a 1 tesla benchtop polarizer with hyperpolarizing solids.

Vaneeckhaute Ewoud E   Bocquelet Charlotte C   Bellier Léa L   Le Huu-Nghia HN   Rougier Nathan N   Jegadeesan Shebha Anandhi SA   Vinod-Kumar Sanjay S   Mathies Guinevere G   Veyre Laurent L   Thieuleux Chloe C   Melzi Roberto R   Banks Daniel D   Kempf James J   Stern Quentin Q   Jannin Sami S  

Physical chemistry chemical physics : PCCP 20240822 33


Hyperpolarization by dissolution dynamic nuclear polarization (dDNP) provides the opportunity to dramatically increase the weak nuclear magnetic resonance (NMR) signal of liquid molecular targets using the high polarization of electron radicals. Unfortunately, the solution-state hyperpolarization can only be accessed once since freezing and melting of the hyperpolarized sample happen in an irreversible fashion. A way to expand the application horizon of dDNP can therefore be to find a recyclable  ...[more]

Similar Datasets

| S-EPMC9286509 | biostudies-literature
| S-EPMC3660528 | biostudies-literature
| S-EPMC4205634 | biostudies-literature
| S-EPMC8361920 | biostudies-literature
| S-EPMC3922122 | biostudies-literature
| S-EPMC10409769 | biostudies-literature
| S-EPMC11883742 | biostudies-literature
| S-EPMC11549732 | biostudies-literature
| S-EPMC11482594 | biostudies-literature
| S-EPMC3265031 | biostudies-other