Project description:ObjectivesPercutaneous patent ductus arteriosus (PDA) stenting is a therapeutic modality in patients with duct-dependent pulmonary circulation with reported success rates from 80-100%. The current study aims to assess the outcome and the indicators of success for PDA stenting in different ductal morphologies using various approaches.MethodsA prospective cohort study from a single tertiary center presented from January 2018 to December 2019 that included 96 consecutive infants with ductal-dependent pulmonary circulation and palliated with PDA stenting. Patients were divided according to PDA origin into 4 groups: Group 1: PDA from proximal descending aorta, Group 2: from undersurface of aortic arch, Group 3: opposite the subclavian artery, Group 4: opposite the innominate/brachiocephalic artery.ResultsThe median age of patients was 22 days and median weight was 3 kg. The procedure was successful in 78 patients (81.25%). PDA was tortuous in 70 out of 96 patients. Femoral artery was the preferred approach in Group 1 (63/67), while axillary artery access was preferred in the other groups (6/11 in Group 2, 11/17 in Group 3, 1/1 in Group 4, P <0.0001). The main cause of procedural failure was inadequate parked coronary wire inside one of the branch of pulmonary arteries (14 cases; 77.7%), while 2 cases (11.1%) were complicated by acute stent thrombosis, and another 2 cases with stent dislodgment. Other procedural complications comprised femoral artery thrombosis in 7 cases (7.2%). Patients with straight PDA, younger age at procedure and who had larger PDA at pulmonary end had higher odds for success (OR = 8.01, 2.94, 7.40, CI = 1.011-63.68, 0.960-0.99, 1.172-7.40,respectively, P = 0.048, 0.031,0.022 respectively).ConclusionsThe approach for PDA stenting and hence the outcome is markedly determined by the PDA origin and morphology. Patients with straight PDA, younger age at procedure and those who had relatively larger PDA at the pulmonary end had better opportunity for successful procedure.
Project description:BackgroundPulsatile tinnitus presents as a unique variation of tinnitus in which a conscious perception of the heartbeat is localized to the ears in either unilateral or bilateral fashion. The sensation is typically caused by an increase in turbulent blood flow in the affected ear, in most cases, due to a structural abnormality of the venous sinuses - the most common of which being stenosis. Herein, we discuss the etiology of pulsatile tinnitus followed by indications for treatment of various pathologies which have been successfully treated with venous sinus stenting and have led to resolution of auditory symptoms.MethodsThe authors queried PubMed database using combinations of the keywords "venous sinus stenting," "endovascular treatment," and "pulsatile tinnitus" to identify relevant studies published in English after 2001 and before December 1, 2020 and verified selected.ResultsOur results corroborate those published in prior reviews reporting a high rate of pulsatile tinnitus resolution with venous sinus stenting.ConclusionThe success of venous sinus stenting is clinically relevant as an effective treatment option for patients suffering from pulsatile tinnitus. Future applications and studies are needed and are currently being developed to further demonstrate the effectiveness of stents in the treatment of pulsatile tinnitus.
Project description:ObjectiveEvaluate the role of venous sinus stenting in the treatment of pulsatile tinnitus among patients with Idiopathic Intracranial Hypertension (IIH) and significant venous sinus stenosis.Subjects and methodsA written informed consent approved by the Weill Cornell institutional review board was signed and obtained from the study participants. Thirty-seven consecutive patients with IIH and venous sinus stenosis who were treated with venous sinus stenting between Jan.2012-Jan.2016 were prospectively evaluated. Patients without pulsatile tinnitus were excluded. Tinnitus severity was categorized based on "Tinnitus Handicap Inventory" (THI) at pre-stent, day-0, 1-month, 3-month, 6-month, 12-month, 18-month and 2-year follow-up. Demographics, body-mass index (BMI), pre and post VSS trans-stenotic pressure gradient were documented. Statistical analysis performed using Pearson's correlation, Chi-square analysis and Fischer's exact test.Results29 patients with a mean age of 29.5±8.5 years M:F = 1:28. Median (mean) THI pre and post stenting were: 4 (3.7) and 1 (1) respectively. Median time of tinnitus resolution post VSS was 0-days. There was significant improvement of THI (Δ Mean: 2.7 THI [95% CI: 2.3-3.1 THI], p<0.001) and transverse-distal sigmoid sinus gradient (Δ Mean: -15.3 mm Hg [95% CI: 12.7-18 mm Hg], p<0.001) post-stenting. Mean follow-up duration of 26.4±9.8 months (3-44 months). VSS was feasible in 100% patients with no procedural complications. Three-patients (10%) had recurrent sinus stenosis and tinnitus at mean follow-up of 12 months (6-30 months).ConclusionVenous sinus stenting is an effective treatment for pulsatile tinnitus in patients with IIH and venous sinus stenosis.
Project description:We investigated if and how length and curvature information are integrated when an object is explored in one hand. Subjects were asked to explore four types of objects between thumb and index finger. Objects differed in either length, curvature, both length and curvature correlated as in a circle, or anti-correlated. We found that when both length and curvature are present, performance is significantly better than when only one of the two cues is available. Therefore, we conclude that there is integration of length and curvature. Moreover, if the two cues are correlated in a circular cross-section instead of in an anti-correlated way, performance is better than predicted by a combination of two independent cues. We conclude that integration of curvature and length is highly efficient when the cues in the object are combined as in a circle, which is the most common combination of curvature and length in daily life.
Project description:The mechanical fixation of endosseous implants, such as screws, in trabecular bone is challenging because of the complex porous microstructure. Development of new screw designs to improve fracture fixation, especially in high-porosity osteoporotic bone, requires a profound understanding of how the structural system implant/trabeculae interacts when it is subjected to mechanical load. In this study, pull-out tests of screw implants were performed. Screws were first inserted into the trabecular bone of rabbit femurs and then pulled out from the bone inside a computational tomography scanner. The tests were interrupted at certain load steps to acquire 3D images. The images were then analysed with a digital volume correlation technique to estimate deformation and strain fields inside the bone during the tests. The results indicate that the highest shear strains are concentrated between the inner and outer thread diameter, whereas compressive strains are found at larger distances from the screw. Tensile strains were somewhat smaller. Strain concentrations and the location of trabecular failures provide experimental information that could be used in the development of new screw designs and/or to validate numerical simulations.
Project description:In the vertebrate central nervous system, exploratory filopodia transiently form on dendritic branches to sample the neuronal environment and initiate new trans-neuronal contacts. While much is known about the molecules that control filopodia extension and subsequent maturation into functional synapses, the mechanisms that regulate initiation of these dynamic, actin-rich structures have remained elusive. Here, we find that filopodia initiation is suppressed by recruitment of ArhGAP44 to actin-patches that seed filopodia. Recruitment is mediated by binding of a membrane curvature-sensing ArhGAP44 N-BAR domain to plasma membrane sections that were deformed inward by acto-myosin mediated contractile forces. A GAP domain in ArhGAP44 triggers local Rac-GTP hydrolysis, thus reducing actin polymerization required for filopodia formation. Additionally, ArhGAP44 expression increases during neuronal development, concurrent with a decrease in the rate of filopodia formation. Together, our data reveals a local auto-regulatory mechanism that limits initiation of filopodia via protein recruitment to nanoscale membrane deformations.
Project description:BackgroundThe aims of the current study were to assess the nutritional status of 25OHD3 and retinol in a northern Chinese population using our established reliable method for the simultaneous determination of serum 25OHD3 and retinol.MethodWe established a reliable method for the simultaneous determination of 25OHD3 and retinol using SPE and UPLC/PDA; measured the serum levels of 25OHD3 and retinol in elementary school students, middle school students, and adults (n = 1181) in northern China; and assessed their nutritional status.ResultsOur method had good precision, detection limit, and linear quantitative range and could process 100 samples within 12 h. The average levels of 25OHD3 and retinol were 16.1 ± 6.7 ng/ml and 328.1 ± 117.1 ng/ml, respectively, in all samples. VD deficiency was common, with a prevalence > 60% in all three age groups, and the high prevalence of VA deficiency (26.1%) was observed only in the elementary school students.ConclusionsVitamin A supplementation should be considered for elementary school students, and vitamin D supplementation is highly recommended for all age groups in Harbin. Our method could be widely adopted in population-based studies and clinical practice.
Project description:Cytoskeletal filaments, such as microtubules and actin filaments, play important roles in the mechanical integrity of cells and the ability of cells to respond to their environment. Measuring the mechanical properties of cytoskeletal structures is crucial for gaining insight into intracellular mechanical stresses and their role in regulating cellular processes. One of the ways to characterize these mechanical properties is by measuring their persistence length, the average length over which filaments stay straight. There are several approaches in the literature for measuring filament deformations, such as Fourier analysis of images obtained using fluorescence microscopy. Here, we show how curvature distributions can be used as an alternative tool to quantify biofilament deformations, and investigate how the apparent stiffness of filaments depends on the resolution and noise of the imaging system. We present analytical calculations of the scaling curvature distributions as a function of filament discretization, and test our predictions by comparing Monte Carlo simulations with results from existing techniques. We also apply our approach to microtubules and actin filaments obtained from in vitro gliding assay experiments with high densities of nonfunctional motors, and calculate the persistence length of these filaments. The presented curvature analysis is significantly more accurate compared with existing approaches for small data sets, and can be readily applied to both in vitro and in vivo filament data through the use of the open-source codes we provide.
Project description:The purpose of this study was to develop a method of estimating pulsatile ocular blood volume (POBV) from measurements taken during an ophthalmic exam, including axial length and using a tonometer capable of measuring intraocular pressure (IOP) and ocular pulse amplitude (OPA). Unpublished OPA data from a previous invasive study was used in the derivation, along with central corneal thickness (CCT) and axial length (AL), as well as IOP from the PASCAL dynamic contour tonometer (DCT) and intracameral (ICM) measurements of IOP for 60 cataract patients. Intracameral mean pressure was set to 15, 20, and 35 mmHg (randomized sequence) in the supine position, using a fluid-filled manometer. IOP and OPA measurements were acquired at each manometric setpoint (DCT and ICM simultaneously). In the current study, ocular rigidity (OR) was estimated using a published significant relationship of OR to the natural log of AL in which OR was invasively measured through fluid injection. Friedenwald's original pressure volume relationship was then used to derive the estimated POBV, delivered to the choroid with each heartbeat as a function of OR, systolic IOP (IOPsys), diastolic IOP (IOPdia), and OPA, according to the derived equation POBV = log (IOPsys/IOPdia) / OR. Linear regression analyses were performed comparing OPA to OR and calculated POBV at each of the three manometric setpoints. POBV was also compared to OPA/IOPdia with all data points combined. Significance threshold was p < 0.05. OR estimated from AL showed a significant positive relationship to OPA for both DCT (p < 0.011) and ICM (p < 0.006) at all three manometric pressure setpoints, with a greater slope for lower IOP. Calculated POBV also showed a significant positive relationship to OPA (p < 0.001) at all three setpoints with greater slope at lower IOP, and a significant negative relationship with IOPdia. In the combined analysis, POBV showed a significant positive relationship to OPA/ IOPdia (p < 0.001) in both ICM and DCT measurements with R2 = 0.9685, and R2 = 0.9589, respectively. POBV provides a straight-forward, clinically applicable method to estimate ocular blood supply noninvasively. Higher IOP in combination with lower OPA results in the lowest values of POBV. The simplified ratio, OPA/ IOPdia, may also provide a useful clinical tool for evaluating changes in ocular blood supply in diseases with a vascular component, such as diabetic retinopathy and normal tension glaucoma. Future studies are warranted.