Unknown

Dataset Information

0

Integrative single-cell RNA-seq and spatial transcriptomics analyses reveal diverse apoptosis-related gene expression profiles in EGFR-mutated lung cancer.


ABSTRACT: In EGFR-mutated lung cancer, the duration of response to tyrosine kinase inhibitors (TKIs) is limited by the development of acquired drug resistance. Despite the crucial role played by apoptosis-related genes in tumor cell survival, how their expression changes as resistance to EGFR-TKIs emerges remains unclear. Here, we conduct a comprehensive analysis of apoptosis-related genes, including BCL-2 and IAP family members, using single-cell RNA sequence (scRNA-seq) and spatial transcriptomics (ST). scRNA-seq of EGFR-mutated lung cancer cell lines captures changes in apoptosis-related gene expression following EGFR-TKI treatment, most notably BCL2L1 upregulation. scRNA-seq of EGFR-mutated lung cancer patient samples also reveals high BCL2L1 expression, specifically in tumor cells, while MCL1 expression is lower in tumors compared to non-tumor cells. ST analysis of specimens from transgenic mice with EGFR-driven lung cancer indicates spatial heterogeneity of tumors and corroborates scRNA-seq findings. Genetic ablation and pharmacological inhibition of BCL2L1/BCL-XL overcome or delay EGFR-TKI resistance. Overall, our findings indicate that BCL2L1/BCL-XL expression is important for tumor cell survival as EGFR-TKI resistance emerges.

SUBMITTER: Izumi M 

PROVIDER: S-EPMC11316060 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Integrative single-cell RNA-seq and spatial transcriptomics analyses reveal diverse apoptosis-related gene expression profiles in EGFR-mutated lung cancer.

Izumi Motohiro M   Fujii Masanori M   Kobayashi Ikei S IS   Ho Vivian V   Kashima Yukie Y   Udagawa Hibiki H   Costa Daniel B DB   Kobayashi Susumu S SS  

Cell death & disease 20240809 8


In EGFR-mutated lung cancer, the duration of response to tyrosine kinase inhibitors (TKIs) is limited by the development of acquired drug resistance. Despite the crucial role played by apoptosis-related genes in tumor cell survival, how their expression changes as resistance to EGFR-TKIs emerges remains unclear. Here, we conduct a comprehensive analysis of apoptosis-related genes, including BCL-2 and IAP family members, using single-cell RNA sequence (scRNA-seq) and spatial transcriptomics (ST).  ...[more]

Similar Datasets

| S-ECPF-GEOD-48414 | biostudies-other
| S-EPMC4235315 | biostudies-literature
| S-EPMC11831598 | biostudies-literature
| S-EPMC10025771 | biostudies-literature
| S-EPMC10937396 | biostudies-literature
| S-EPMC5709499 | biostudies-literature
2014-03-10 | E-GEOD-48414 | biostudies-arrayexpress
2014-03-10 | GSE48414 | GEO
| S-EPMC9737051 | biostudies-literature
| S-EPMC10769299 | biostudies-literature