Unknown

Dataset Information

0

Understanding patient-derived tumor organoid growth through an integrated imaging and mathematical modeling framework.


ABSTRACT: Patient-derived tumor organoids (PDTOs) are novel cellular models that maintain the genetic, phenotypic and structural features of patient tumor tissue and are useful for studying tumorigenesis and drug response. When integrated with advanced 3D imaging and analysis techniques, PDTOs can be used to establish physiologically relevant high-throughput and high-content drug screening platforms that support the development of patient-specific treatment strategies. However, in order to effectively leverage high-throughput PDTO observations for clinical predictions, it is critical to establish a quantitative understanding of the basic properties and variability of organoid growth dynamics. In this work, we introduced an innovative workflow for analyzing and understanding PDTO growth dynamics, by integrating a high-throughput imaging deep learning platform with mathematical modeling, incorporating flexible growth laws and variable dormancy times. We applied the workflow to colon cancer organoids and demonstrated that organoid growth is well-described by the Gompertz model of growth. Our analysis showed significant intrapatient heterogeneity in PDTO growth dynamics, with the initial exponential growth rate of an organoid following a lognormal distribution within each dataset. The level of intrapatient heterogeneity varied between patients, as did organoid growth rates and dormancy times of single seeded cells. Our work contributes to an emerging understanding of the basic growth characteristics of PDTOs, and it highlights the heterogeneity in organoid growth both within and between patients. These results pave the way for further modeling efforts aimed at predicting treatment response dynamics and drug resistance timing.

SUBMITTER: Gunnarsson EB 

PROVIDER: S-EPMC11324155 | biostudies-literature | 2024 Aug

REPOSITORIES: biostudies-literature

altmetric image

Publications

Understanding patient-derived tumor organoid growth through an integrated imaging and mathematical modeling framework.

Gunnarsson Einar Bjarki EB   Kim Seungil S   Choi Brandon B   Schmid J Karl JK   Kaura Karn K   Lenz Heinz-Josef HJ   Mumenthaler Shannon M SM   Foo Jasmine J  

PLoS computational biology 20240802 8


Patient-derived tumor organoids (PDTOs) are novel cellular models that maintain the genetic, phenotypic and structural features of patient tumor tissue and are useful for studying tumorigenesis and drug response. When integrated with advanced 3D imaging and analysis techniques, PDTOs can be used to establish physiologically relevant high-throughput and high-content drug screening platforms that support the development of patient-specific treatment strategies. However, in order to effectively lev  ...[more]

Similar Datasets

| S-EPMC8724556 | biostudies-literature
| S-EPMC11573407 | biostudies-literature
| S-EPMC10783557 | biostudies-literature
| S-EPMC10138743 | biostudies-literature
| S-EPMC9388485 | biostudies-literature
| S-EPMC11830081 | biostudies-literature
| S-EPMC11620051 | biostudies-literature
| S-EPMC7546514 | biostudies-literature
| S-EPMC5890941 | biostudies-literature
| S-EPMC5573916 | biostudies-literature