Project description:Objectives/hypothesisOptical coherence tomography (OCT) can provide high-resolution ( approximately 10-15 microm/pixel) images of vocal fold microanatomy, as demonstrated previously. We explored physiologically triggered Fourier-domain OCT for imaging vocal folds during phonation. The goal is to visualize dynamic histological cross sections and four-dimensional data sets where multiple planes are displayed in synchronized motion. If feasible, this approach could be a useful research tool and spur development of new clinical instrumentation.Study designA Fourier-domain, triggered OCT system was created and tested in experiments on excised calf larynges to obtain preliminary observations and characterize important factors affecting image quality.MethodsLarynges were imaged during phonation driven by warm, humidified air. A subglottal pressure signal was used to synchronize the OCT system with the phonatory cycle. Image sequences were recorded as functions of anatomical location or subglottal pressure. Implant materials were also imaged during vibration, both in isolation and after injection into a vocal fold.ResultsOscillations of epithelium and lamina propria were observed, and parameters such as shape, amplitude, and velocity of the vocal fold mucosal waves were found to be measurable. Ripples of mucosal wave as small as 100 microm in vertical height were clearly visible. Internal strain was also observed in normal and implanted vocal folds.ConclusionsFour-dimensional OCT of the vocal fold may help to more directly relate biomechanics to anatomy and disease. It may also be useful for assaying the functional rheology of implants in the context of real tissue. With further development, this technology has potential for clinical endoscopic application.
Project description:PurposeTo study the accommodation process in normal eyes using a commercially available clinical system based on swept-source anterior segment optical coherence tomography (AS-OCT).SettingOphthalmology Department, University of Parma, Italy.DesignEvaluation of diagnostic technology.MethodsRight eyes were analyzed using swept-source AS-OCT (Casia SS-1000). The optical vergence of the internal coaxial fixation target was adjusted during imaging to obtain monocular accommodation stimuli with different amplitudes (0, 3.0, 6.0, and 9.0 diopters [D]). Overlapping of real and conjugate OCT images enabled imaging of all the anterior segment optical surfaces in a single frame. Central corneal thickness (CCT), anterior chamber depth (ACD), and lens thickness were extracted from the OCT scans acquired at different static accommodation stimulus amplitudes. The crystalline lens was analyzed dynamically during accommodation and disaccommodation by acquiring sequential OCT images of the anterior segment at a rate of 8 frames per second. The lens thickness was extracted from the temporal sequence of OCT images and plotted as a function of time.ResultsThe study analyzed 14 eyes of 14 subjects aged 18 to 46 years. During accommodation, the decrease in the ACD was statistically significant (P < .05), as were the increase in the lens thickness (P < .001) and the slight movement forward of the lens central point (P < .01). The CCT and anterior chamber width measurements did not change statistically significantly during accommodation. The lens thickness at 0 D was positively correlated with age (P < .01).ConclusionHigh-resolution real-time imaging and biometry of the accommodating anterior segment can be effectively performed using a commercially available swept-source AS-OCT clinical device.Financial disclosureNo author has a financial or proprietary interest in any material or method mentioned.
Project description:Optical coherence tomography offers astounding opportunities to image the complex structure of living tissue but lacks functional information. We present dynamic full-field optical coherence tomography as a technique to noninvasively image living human induced pluripotent stem cell-derived retinal organoids. Coloured images with an endogenous contrast linked to organelle motility are generated, with submicrometre spatial resolution and millisecond temporal resolution, creating a way to identify specific cell types in living tissue via their function.
Project description:Proliferative diabetic retinopathy (PDR) is a major cause of blindness in diabetic individuals. Optical coherence tomography (OCT) and OCT-angiography (OCTA) are noninvasive imaging techniques useful for the diagnosis and assessment of PDR. We aim to review several recent developments using OCT and discuss their present and potential future applications in the clinical setting. An electronic database search was performed so as to include all studies assessing OCT and/or OCTA findings in PDR patients published from 1 January 2020 to 31 May 2021. Thirty studies were included, and the most recently published data essentially focused on the higher detection rate of neovascularization obtained with widefield-OCT and/or OCTA (WF-OCT/OCTA) and on the increasing quality of retinal imaging with quality levels non-inferior to widefield-fluorescein angiography (WF-FA). There were also significant developments in the study of retinal nonperfusion areas (NPAs) using these techniques and research on the impact of PDR treatment on NPAs and on vascular density. It is becoming increasingly clear that it is critical to use adequate imaging protocols focused on optimized segmentation and maximized imaged retinal area, with ongoing technological development through artificial intelligence and deep learning. These latest findings emphasize the growing applicability and role of noninvasive imaging in managing PDR with the added benefit of avoiding the repetition of invasive conventional FA.
Project description:Dynamic contrast optical coherence tomography (DyC-OCT), an emerging imaging method, utilizes fluctuation patterns in OCT signals to enhance contrast, thereby enabling non-invasive label-free volumetric live cell imaging. In this mini review, we explain the core concepts behind DyC-OCT image formation and its system configurations, serving as practical guidance for future DyC-OCT users. Subsequently, we explore its applications in delivering high-quality, contrast-enhanced images of cellular morphology, as well as in monitoring changes in cellular activity/viability assay experiments.
Project description:The implementation of live imaging in reproductive research is crucial for studying the physiological dynamics. Sperm transport is a highly dynamic process regulated by tubular contractions and luminal flows within the male reproductive tract. However, due to the lack of imaging techniques to capture these dynamics in vivo, there is little information on the physiological and biomechanical regulation of sperm transport through the male reproductive tract. Here, we present a functional in vivo imaging approach using optical coherence tomography, enabling live, label-free, depth-resolved, three-dimensional, high-resolution visualization of the mouse testis and epididymis. With this approach, we spatiotemporally captured tubular contractility in mouse testis and epididymis, as well as microstructures of these reproductive organs. Our findings demonstrated that the contraction frequency varies significantly depending on the epididymal regions, suggesting the spatial regulation of epididymal contractility. Furthermore, we implemented quantitative measurements of the contraction wave and luminal transport through the epididymal duct, revealing the physiological dynamics within the male reproductive tract. The results show that the contraction wave propagates along the epididymal duct and the wave propagation velocity was estimated in vivo. In conclusion, this is the first study to develop in vivo dynamic volumetric imaging of the male reproductive tract, which allows for quantitative analysis of the dynamics associated with sperm transport. This study sets a platform for various studies investigating normal and abnormal male reproductive physiology as well as the pharmacological and environmental effects on reproductive functions in mouse models, ultimately contributing to a comprehensive understanding of male reproductive disorders.
Project description:Molecular imaging holds a pivotal role in medicine due to its ability to provide invaluable insight into disease mechanisms at molecular and cellular levels. To this end, various techniques have been developed for molecular imaging, each with its own advantages and disadvantages(1-4). For example, fluorescence imaging achieves micrometre-scale resolution, but has low penetration depths and is mostly limited to exogenous agents. Here, we demonstrate molecular imaging of endogenous and exogenous chromophores using a novel form of spectroscopic optical coherence tomography. Our approach consists of using a wide spectral bandwidth laser source centred in the visible spectrum, thereby allowing facile assessment of haemoglobin oxygen levels, providing contrast from readily available absorbers, and enabling true-colour representation of samples. This approach provides high spectral fidelity while imaging at the micrometre scale in three dimensions. Molecular imaging true-colour spectroscopic optical coherence tomography (METRiCS OCT) has significant implications for many biomedical applications including ophthalmology, early cancer detection, and understanding fundamental disease mechanisms such as hypoxia and angiogenesis.
Project description:Lacrimal canaliculus (LC) has a key role in tear drainage, but it is difficult to evaluate the LC in detail, using the existing examinations. In this study, our novel LC imaging technique provided the high-resolution images of LC in a non-invasive manner. Three-dimensional images of LC were acquired via the palpebral conjunctiva from 20 healthy volunteers (20 eyes) and 10 patients with various lacrimal disorders (10 eyes), using optical coherence tomography (OCT) dacryography (OCTD). The LC images showed morphological differences between the vertical and horizontal segments. The function of LC could be evaluated by measuring the intralumen signal intensity over time after instillation of a contrast agent (2% rebamipide ophthalmic suspension). OCTD clearly visualised the blind extremity of the LC in four patients with punctal obstruction, which was useful for deciding the punctal incision location. In one patient with canalicular obstruction, contrast agent successfully highlighted the LC that had become narrow toward the site of obstruction. Significant differences were not found in the function and morphology of LC between the patients with NLDO and the healthy subjects. OCTD may be a useful tool for LC imaging, because it facilitates quantitative and simultaneous evaluation of LC morphology and function.
Project description:Embryogenesis is a highly complex and dynamic process, and its visualization is crucial for understanding basic physiological processes during development and for identifying and assessing possible defects, malformations, and diseases. While traditional imaging modalities, such as ultrasound biomicroscopy, micro-magnetic resonance imaging, and micro-computed tomography, have long been adapted for embryonic imaging, these techniques generally have limitations in their speed, spatial resolution, and contrast to capture processes such as cardiodynamics during embryogenesis. Optical coherence tomography (OCT) is a noninvasive imaging modality with micrometer-scale spatial resolution and imaging depth up to a few millimeters in tissue. OCT has bridged the gap between ultrahigh resolution imaging techniques with limited imaging depth like confocal microscopy and modalities, such as ultrasound sonography, which have deeper penetration but poorer spatial resolution. Moreover, the noninvasive nature of OCT has enabled live imaging of embryos without any external contrast agents. We review how OCT has been utilized to study developing embryos and also discuss advances in techniques used in conjunction with OCT to understand embryonic development.