Project description:Estimation of the postmortem interval (PMI) is a poorly studied field in veterinary pathology. The development of field-applicable methods is needed given that animal cruelty investigations are increasing continually. We evaluated various histologic criteria in equine brain, liver, and muscle tissue to aid the estimation of PMI in horses, which is central to forensic investigations of suspicious death. After death, autolysis proceeds predictably, depending on environmental conditions. Currently, no field-applied methods exist that accurately estimate the PMI using histology in animals or humans through quantification of autolysis. Brain, liver, and skeletal muscle from 12 freshly euthanized horses were held at 22°C and 8°C for 72 h. Tissues were sampled at T0h, T1h, T2h, T4h, T6h, T12h, T24h, T36h, T48h, T60h, and T72h. For each tissue, we quantified 5 to 7 criteria associated with autolysis, based on the percentage of microscopic field involved. Each criterion was modeled, with temperature and time as independent variables. Changes were most predictable in liver and muscle over the first 72 h postmortem. The criteria for autolysis that were present most extensively at both temperatures were hepatocyte individualization and the separation of bile duct epithelium from the basement membrane. The changes that were present next most extensively were disruption of myofiber continuity, hypereosinophilia, and loss of striation. Brain changes were highly variable. The high statistical correlation between the parameter "autolysis" and the variables "time/temperature", indicates that autolysis is progressive and predictable. Further investigation of these criteria is needed to establish histologic algorithms for PMI.
Project description:The establishment of postmortem interval is one of the most important aspects of forensic expertise. Microbes may provide a novel way to estimate the postmortem intervals in order to avoid many of these limitations. The oral cavity harbors one of the most diverse microbiomes that play a key role in the decomposition of corpses. In this study, the oral bacterial community showed obvious changes in relative abundance during the process of mice decomposition. Meanwhile, at different taxonomic levels, specific bacteria were found to be significantly correlated with the postmortem interval. Linear regression models between relative abundance and the postmortem interval were constructed. Among these species, Gamma-proteobacteria and Proteus were the best ones that can be used to infer the postmortem interval, especially late postmortem interval. Therefore, we suggest that succession of oral microbial community can be developed as a forensic tool for estimating the postmortem interval.
Project description:The post-mortem interval (PMI) is the time that elapses since the death of an individual until the body is found. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI, since they can better support degradation. To find potential biomarkers for PMI estimation, we analyzed the miRNome at early PMI in rat skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 micoarrays. In this dataset, we include the expression of 1218 rat miRNAs at early postmortem interval.
Project description:The postmortem interval (PMI) is the time elapsing since the death of an individual until the body is examined. Different molecules have been analyzed to better estimate the PMI with variable results. The miRNAs draw attention in the forensic field to estimate the PMI as they can better support degradation. In the present work, we analyzed the miRNome at early PMI in rats' skeletal muscle using the Affymetrix GeneChip™ miRNA 4.0 microarrays. We found 156 dysregulated miRNAs in rats' skeletal muscle at 24 h of PMI, out of which 84 were downregulated, and 72 upregulated. The miRNA most significantly downregulated was miR-139-5p (FC = -160, p = 9.97 × 10-11), while the most upregulated was rno-miR-92b-5p (FC = 241.18, p = 2.39 × 10-6). Regarding the targets of these dysregulated miRNAs, the rno-miR-125b-5p and rno-miR-138-5p were the miRNAs with more mRNA targets. The mRNA targets that we found in the present study participate in several biological processes such as interleukin secretion regulation, translation regulation, cell growth, or low oxygen response. In addition, we found a downregulation of SIRT1 mRNA and an upregulation of TGFBR2 mRNA at 24 h of PMI. These results suggest there is an active participation of miRNAs at early PMI which could be further explored to identify potential biomarkers for PMI estimation.
Project description:Duplications and triplications of the ?-synuclein (SNCA) gene increase risk for PD, suggesting increased expression levels of the gene to be associated with increased PD risk. However, past SNCA expression studies in brain tissue report inconsistent results. We examined expression of the full-length SNCA transcript (140 amino acid protein isoform), as well as total SNCA mRNA levels in 165 frontal cortex samples (101 PD, 64 control) using quantitative real-time polymerase chain reaction. Additionally, we evaluated the relationship of eight SNPs in both 5' and 3' regions of SNCA with the gene expression levels. The association between postmortem interval (PMI) and SNCA expression was different for PD and control samples: SNCA expression decreased with increasing PMI in cases, while staying relatively constant in controls. For short PMI, SNCA expression was increased in PD relative to control samples, whereas for long PMI, SNCA expression in PD was decreased relative to control samples.
Project description:Objectives: We provide a systematic review of the literature to evaluate the current research status of protein degradation-based postmortem interval (PMI) estimation. Special attention is paid to the applicability of the proposed approaches/methods in forensic routine practice. Method: A systematic review of the literature on protein degradation in tissues and organs of animals and humans was conducted. Therefore, we searched the scientific databases Pubmed and Ovid for publications until December 2019. Additional searches were performed in Google Scholar and the reference lists of eligible articles. Results: A total of 36 studies were included. This enabled us to consider the degradation pattern of over 130 proteins from 11 different tissues, studied with different methods including well-established and modern approaches. Although comparison between studies is complicated by the heterogeneity of study designs, tissue types, methods, proteins and outcome measurement, there is clear evidence for a high explanatory power of protein degradation analysis in forensic PMI analysis. Conclusions: Although only few approaches have yet exceeded a basic research level, the current research status provides strong evidence in favor of the applicability of a protein degradation-based PMI estimation method in routine forensic practice. Further targeted research effort towards specific aims (also addressing influencing factors and exclusion criteria), especially in human tissue will be required to obtain a robust, reliable laboratory protocol, and collect sufficient data to develop accurate multifactorial mathematical decomposition models.
Project description:Establishing the time since death is critical in every death investigation, yet existing techniques are susceptible to a range of errors and biases. For example, forensic entomology is widely used to assess the postmortem interval (PMI), but errors can range from days to months. Microbes may provide a novel method for estimating PMI that avoids many of these limitations. Here we show that postmortem microbial community changes are dramatic, measurable, and repeatable in a mouse model system, allowing PMI to be estimated within approximately 3 days over 48 days. Our results provide a detailed understanding of bacterial and microbial eukaryotic ecology within a decomposing corpse system and suggest that microbial community data can be developed into a forensic tool for estimating PMI. DOI:http://dx.doi.org/10.7554/eLife.01104.001.
Project description:The accurate estimation of postmortem interval (PMI) is crucial in the investigation of homicide cases. Unlike carcasses on land, various biological and abiotic factors affect the decomposition of carcasses in water. In addition, the insect evidence (e.g., blow flies) that is commonly used to estimate the PMI are unavailable before the carcasses float on water. Therefore, it is difficult to estimate the PMI of a carcass in water. This study aimed to explore an effective way of estimating the PMI of a carcass in water. Carrion insects, brain tissue RNA, bacterial biofilm on the skin surface, and algae in water with PMI were studied using 45 rat carcasses in a small river. The results showed that carrion insects might not be suitable for the estimation of PMI of a carcass in water since they do not have a regular succession pattern as a carcass on land, and the flies only colonized six of the carcasses. The target genes (β-actin, GAPDH, and 18S) in the brain tissue were associated with the PMI in a time-dependent manner within 1 week after death. A polynomial regression analysis was used to assess the relationship between the gene expression profiles and PMI. The correlation coefficient R 2 of each regression equation was ≥ 0.924. A third-generation sequencing analysis showed that the bacteria on the skin surface of the carcass and the algae in the water samples around the carcass had a regular succession pattern, where Cryptomonas and Placoneis incased and decreased, respectively, within first 9 days. The results of this study provide a promising way to use the brain tissue RNA, bacterial biofilm, and algae to estimate the PMI of a carcass in water.
Project description:We have previously reported that the dispersion of spin-lattice relaxation rates in the rotating frame (R1ρ ) of tissue water protons at high field can be dominated by chemical exchange contributions. Ischemia in brain causes changes in tissue pH, which in turn may affect proton exchange rates. Amide proton transfer (APT, a form of chemical exchange saturation transfer) has been shown to be sensitive to chemical exchange rates and able to detect pH changes non-invasively following ischemic stroke. However, the specificity of APT to pH changes is decreased because of the influence of several other factors that affect magnetization transfer. R1ρ is less influenced by such confounding factors and thus may be more specific for detecting variations in pH. Here, we applied a spin-locking sequence to detect ischemic stroke in animal models. Although R1ρ images acquired with a single spin-locking amplitude (ω1 ) have previously been used to assess stroke, here we use ΔR1ρ , which is the difference in R1ρ values acquired with two different locking fields to emphasize selectively the contribution of chemical exchange effects. Numerical simulations with different exchange rates and measurements of tissue homogenates with different pH were performed to evaluate the specificity of ΔR1ρ to detect tissue acidosis. Spin-lock and APT data were acquired on five rat brains after ischemic strokes induced via middle cerebral artery occlusions. Correlations between these data were analyzed at different time points after the onset of stroke. The results show that ΔR1ρ (but not R1ρ acquired with a single ω1 ) was significantly correlated with APT metrics consistent with ΔR1ρ varying with pH.